Transactions on Cybernetics

Scope

The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or between machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.

IEEE Transactions on Cybernetics replaced the IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics on January 1, 2013.

Editor-in-Chief

Peng Shi
Peng Shi
Editor-In-Chief 
School of Electrical and Electronic Engineering,
The University of Adelaide, Australia

Articles

03 February 2025
null...
03 February 2025
null...
10 January 2025
This article considers the hierarchical containment control (HCC) for flexible mirrored collaboration, which accommodates the bipartite cluster consensus behavior in two symmetric convex hulls formed by multiple leaders. First, to achieve the mirrored collaboration in symmetric convex hulls, the layer-signed digraph is generated by involving the antagonistic interaction. Benefiting from...

See more at IEEE Xplore

11 February 2025
In this article, an integral reinforcement learning (IRL) method is developed for dynamic event-triggered nonzero-sum (NZS) games to achieve the Nash equilibrium of unmanned surface vehicles (USVs) with state and input constraints. Initially, a mapping function is designed to map the state and control of the USV into a safe...
04 February 2025
In this article, the optimal consensus tracking control for nonlinear multiagent systems (MASs) with unknown dynamics and disturbances is investigated via adaptive dynamic programming (ADP) technology. Taking into account the disturbance as control inputs, the optimal control problem for the nonlinear MASs is reformulated as a multiplayer zero-sum differential game....
29 January 2025
This article studies the dynamic event-triggered adaptive finite-time tracking control issue for a robotic manipulator (RM) system with disturbances. First, a new global prescribed performance function (PPF) is designed based on a scaling function such that the tracking error evolves within the constrained bounds and the restriction related to the...
03 January 2025
Actuator and sensor faults are among the most common factors affecting the stability of multiagent systems (MASs). This article proposes a dynamic event-triggered fault-tolerant control (FTC) algorithm based on descriptor sliding-mode observers to address actuator and sensor faults in MASs. First, the MAS dynamics are reformulated into a descriptor form,...
03 January 2025
In this article, a novel simulation-to-real (sim2real) multimodal learning framework is proposed for adaptive dexterous grasping and grasp status prediction. A two-stage approach is built upon the Isaac Gym and several proposed pluggable modules, which can effectively simulate dexterous grasps with multimodal sensing data, including RGB-D images of grasping scenarios,...

See more at IEEE Xplore