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The integration of multi-agent systems (MAS) and large language models (LLMs) is 
redefining intelligent software. MAS research comes from distributed AI and cybernetics. 
It has developed methods for task allocation, negotiation, coalition formation, and fault 
tolerance among autonomous agents. However, traditional agents rely on brittle domain 
knowledge and fixed communication rules. In contrast, LLMs bring open-domain 
knowledge, fluent language skills, and emergent reasoning. Yet they often function as 
single, centralized units. Combining MAS and LLMs offers a new approach. MAS 
provides structure and coordination. LLMs offer flexible communication and general 
knowledge. Together, they create intelligent systems where cognition meets organization. 

Recent systems show the potential of this fusion. Frameworks like AutoGen and CrewAI 
allow fast deployment of LLM agent teams. These agents take on roles, talk with each 
other, give feedback, and use external tools to reach shared goals [1][2]. MetaGPT and 
ChatDev add more structure. They embed standard engineering workflows into agent 
behavior to produce software with minimal human input [3][4]. CAMEL demonstrates 
how prompting can define agent personalities. Multi-agent debate systems show that 
dialogue among agents can improve reasoning and factual accuracy [5][6]. 

These examples suggest a growing role for “LLM societies.” Such systems may support 
code generation, scientific research, mission planning, and cyber-physical control. 
However, this new field also raises key questions. How can we manage many agents 
without high latency? What safety mechanisms can prevent errors from spreading in the 
system? How do we measure the success of a team, not just a single model? And which 
organizational structures, such as roles, hierarchies, markets, or swarms, can ensure 
consistent performance? Solving these problems needs knowledge from many fields. 
These include natural language processing, distributed systems, control theory, and 
organizational psychology. The MAS × LLM paradigm opens rich opportunities and 
challenges for future research. 

Emerging MAS×LLM Architectures 

A wave of new frameworks (2023–2025) is exploring how multiple LLM-driven agents 
can work together. Key examples include: 

l AutoGen (Microsoft) – An open-source framework for composing multiple agents 
that converse to accomplish tasks [3]. AutoGen provides conversable agents that can 
be LLM-driven, human-in-the-loop, tool-using, or any combination [3]. Developers 
can flexibly define agent behaviors and conversation patterns (in natural language or 
code) to fit different applications [3]. AutoGen’s generic infrastructure has been used 
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in domains from coding and math to supply-chain optimization [3]. It essentially 
automates multi-agent chats, making it easy to build agent teams that autonomously 
carry out complex workflows [4]. 

 

Figure 1 AutoGen enables diverse LLM-based applications using multi-agent conversations [3] 

l CrewAI – An open-source Python framework focused on organizing collaborative AI 
teams. CrewAI emphasizes role-based agents and structured workflows [5]. 
Developers assign specialized roles to each agent (e.g. data analyzer, planner, 
executor), define tasks and subtasks, and let CrewAI handle inter-agent 
communication and coordination [5]. Like a human team, CrewAI agents 
communicate and coordinate to achieve shared objectives. This yields efficient task 
delegation and teamwork, allowing a crew of agents to tackle complex problems 
more effectively than any single agent [5]. 

l MetaGPT & ChatDev – These projects take inspiration from organizational 
structures. MetaGPT encodes Standardized Operating Procedures (SOPs) into 
prompt sequences to guide multiple LLM agents through an “assembly line” 
workflow [6]. In a software engineering scenario, MetaGPT assigns diverse roles 
(e.g. Product Manager, Architect, Coder, Tester) to different agents, who then 
collaborate stepwise on a project [6]. This structured role specialization helps catch 
errors (agents verify each other’s outputs) and reduces cascading hallucinations that 
can occur when naively chaining LLM outputs [6]. ChatDev similarly simulates a 
virtual software company with agents filling roles like CEO, CTO, Engineer, etc., 
following a waterfall development process [1]. Each agent handles a phase (design, 
coding, testing, documentation) and holds “meetings” to coordinate. Both MetaGPT 
and ChatDev demonstrate how imposing an organizational paradigm on LLM agents 
leads to more coherent and scalable solutions for complex multi-step tasks [6, 1]. 
Notably, ChatDev’s team of LLM-based agents achieved fully automated creation of 
simple software, illustrating the potential of collective intelligence — the group of 
agents outperforms a single model on complex projects [1]. 
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Figure 2: CAMEL Role-Playing Framework [2] 

l CAMEL (Communicative Agents for Mind Exploration) – A research framework 
that introduced multi-agent role-playing with LLMs [2]. In CAMEL, agents are 
given distinct roles and a shared goal, then converse to solve tasks without human 
intervention. A special “inception prompting” technique is used to bootstrap the 
agents with initial personas/instructions [2]. The agents then autonomously cooperate 
in natural language, generating dialogues that can be used to study emergent 
behaviors in an LLM society [2]. CAMEL, accepted at NeurIPS 2023, provided early 
evidence that two or more LLM agents in conversation can autonomously drive a 
task to completion, essentially reducing the need for continuous human prompts [2]. 
It open-sourced a library for further research on communicative multi-agent 
behaviors. 

l OpenAI’s Swarm and Agent SDK – Even major AI labs are developing tools for 
MAS with LLMs. Swarm (an experimental OpenAI framework from 2023) and its 
successor, the OpenAI Agents SDK, help orchestrate multiple agents and manage 
handoffs between them [7]. For example, one can configure a triage agent that routes 
tasks to specialist sub-agents (a pattern for customer support or multi-step queries) 
[7]. The SDK also provides guardrails for safe inter-agent interactions and tracing 
tools for debugging multi-agent workflows [7]. This reflects an industry push 
towards standardized infrastructure for building agent ecosystems where LLM agents 
delegate and coordinate with each other. 

These architectures explore different coordination schemes – from free-form chats to 
strict role hierarchies – but all leverage LLMs at their core. They provide evidence that 
carefully structured multi-agent setups can achieve results that single LLMs or simpler 
tool-using agents struggle with, by harnessing division of labor and iterative 
collaboration. 

Synergies Between MAS and LLMs 

When a multi-agent architecture surrounds an LLM, the first advantage is role-centred 
task decomposition: a complex goal is broken into focused subtasks and each is delegated 
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to an agent whose system-prompt encodes the necessary expertise, so every model 
operates within a concise context window and can reason more deeply [3][8]. Because 
several agents work in parallel they can review and critique one another’s intermediate 
results, a practice that routinely exposes hallucinations or logical slips before the answer 
ever reaches the user [8][9][10]. The orchestrator can also match task difficulty to model 
size, letting lightweight models clear routine hurdles while heavyweight LLMs 
concentrate on reasoning bottlenecks; human or tool agents can be inserted at any stage 
without disturbing the workflow [4]. Finally, running several semi-independent agents 
encourages divergent exploration: each agent pursues a different angle, and their outputs 
are merged or voted upon, giving the team the same creative breadth one expects from a 
spirited brainstorming session [1]. 

LLMs, in turn, augment classical MAS in four decisive ways. First, they give every agent 
the ability to negotiate, explain and learn in plain language, eliminating the rigid, hand-
crafted message schemas that once made MAS integration painful [4]. Second, because 
each agent carries a vast store of pre-trained knowledge, the whole team acquires an 
encyclopaedic memory and a robust commonsense reasoning engine, enabling operation 
in open-ended environments [11]. Third, an LLM agent can understand a high-level 
objective, decide which colleague—or external tool—is best suited for each sub-task, and 
hand off the work accordingly, as demonstrated by the routing patterns in the Agent SDK 
[7]. Finally, the same prompting techniques that let a single model learn from a few 
examples allow agents to teach one another on the fly; the team can absorb new skills or 
even reorganise its own structure while the application is running, giving MAS an 
adaptability that rule-based agents never possessed. 

New Paradigms: Towards Collaborative Intelligence 

The intersection of MAS and LLMs is giving rise to new conceptual paradigms that go 
beyond classical definitions of either field. One emerging concept is “collective 
intelligence” in AI – the idea that a group of LLM agents can exhibit emergent 
intelligence exceeding that of any individual. ChatDev explicitly frames itself as a testbed 
for studying collective intelligence, noting how a coordinated agent team can outperform 
lone agents on complex tasks [1]. We are essentially witnessing the birth of collaborative 
intelligence powered by LLM communities. This resembles a society of mind where each 
agent contributes its knowledge and skills to solve problems jointly, reminiscent of 
Marvin Minsky’s vision but now achievable with modern AI.  

A related paradigm is the notion of organizational LLMs or structured agent societies. 
Instead of treating an LLM as a monolithic model, researchers are exploring 
organizational structures as a computing paradigm: e.g. arranging LLM agents in 
hierarchies, teams, or markets. MetaGPT and ChatDev demonstrate an organizational 
design, where the multi-agent system mimics a company with inter-dependent roles [6, 1]. 
This is more than a framework, it’s a paradigm where solving a task means spawning an 
organization of AIs to tackle it. Each role has a defined scope and procedure, and the 
overall system functions via their interactions. Early results are promising; for example, 
MetaGPT’s structured approach produced more coherent software code than unstructured 
multi-agent chats [6]. The success of such systems hints that incorporating human 



 5 

organizational principles (like workflows, role hierarchies, and meetings) could become a 
standard paradigm for deploying LLMs in large-scale applications.  

We also see new paradigms in multi-agent collaboration techniques. One is multi-agent 
debate (MAD) as a paradigm for truth-seeking and decision making. Here, multiple LLM 
agents argue different viewpoints or solutions, potentially with one agent assigned as a 
judge. The debate format encourages agents to surface evidence and counterarguments, 
leading to more reliable outcomes. Research has shown that increasing the number of 
debating agents or debate rounds can significantly improve factual accuracy and 
reasoning quality [9]. Frameworks like Agent4Debate (with 4 agents collaborating in a 
debate) demonstrated near-human performance in competitive debates [8], highlighting 
debate as a powerful paradigm for AI self-checking. Another technique is self-reflection 
in a multi-agent loop, where agents explicitly reflect on feedback or mistakes either 
individually or by soliciting critiques from peer agents. This approach, related to the 
“Reflexion” method, has been integrated into multi-agent setups to iteratively improve 
answers and plans [12].  

Crucially, these paradigms point toward LLM-driven agents that exhibit social behaviors 
– communication, cooperation, competition, teaching, and even empathy in some cases. 
For instance, the Generative Agents experiment not only showed agents coordinating a 
party, but also each agent maintaining personal memories and relationships, which is a 
rudimentary form of social intelligence in silico [11]. We can imagine future AI systems 
composed of dozens or hundreds of agents forming complex social ecosystems, 
potentially giving rise to entirely new behaviors and capabilities through their 
interactions. This could transform how we approach problems in economics (with 
negotiating agent markets), governance (AI committees), education (tutor and student 
agents), and beyond. 

Challenges and Future Directions 

While MAS×LLM systems are promising, significant challenges remain before these 
multi-agent paradigms can be widely and reliably deployed: 

l Coordination Complexity: Orchestrating many LLM agents is non-trivial. As the 
number of agents grows, ensuring they stay on track and don’t talk in circles or 
conflict requires careful design. Without a good coordination mechanism, agents 
might duplicate work or work at cross-purposes. Research like OpenAI’s handoffs in 
the Agent SDK aims to address this by intelligently routing tasks [7], but designing 
optimal coordination strategies (centralized vs. decentralized control, peer-to-peer vs. 
leader-agent models) is an open area. 

l Communication Overhead and Efficiency: Multi-agent dialogues incur extra latency 
and cost. Every message between agents is essentially another LLM inference. As 
one blog noted about an LLM orchestrator, both the multi-round LLM calls and 
interactions with external models can slow down the process [12]. If not managed, a 
team of agents might be dramatically less efficient than a single agent. Future work 
must improve efficiency – e.g. by compressing communication (using concise 
structured messages when possible) or by limiting interaction rounds. Techniques 
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like summarizing the dialogue state or sharing a short-term memory context could 
help reduce the context length needed for each exchange [12]. There is also interest 
in asynchronous agent frameworks, where agents don’t need to operate in strict turn-
taking, to better parallelize their work. 

l Reliability and Alignment: Having multiple LLMs does not automatically remove 
issues like hallucination or biased reasoning; it can sometimes amplify them if agents 
feed each other incorrect information. Ensuring that agents correct rather than 
reinforce each other’s errors is a challenge. Methods such as having a dedicated 
verifier agent, or adversarial roles (as in debate), are being tested [8]. Alignment is 
another aspect: when agents have different goals or personas, the system must still 
align with the user’s overall objective and human values. There is a risk of emergent 
undesirable behaviors in multi-agent settings (for example, agents could learn to 
“game” the system in unintended ways or collectively defy instructions). Research 
into agent guardrails and monitoring is underway – OpenAI’s guardrail feature in the 
SDK is one example to validate agent outputs and intercept unsafe actions [7]. 
Developing robust evaluation methods for multi-agent outcomes (beyond single-
agent benchmarks) will be important to measure progress here. 

l Prompt Management and Context Sharing: In multi-agent systems driven by 
prompts, managing the prompt content for each agent becomes complex. Each agent 
has its own context window – sharing relevant information between agents without 
overwhelming them is tricky. If each agent naively repeats all prior conversation, the 
context will balloon. Approaches like a shared blackboard memory or a message 
passing protocol are being considered. Some frameworks allow direct data exchange 
or tool-based communication to avoid going through the LLM every time. Another 
direction is fine-tuning or specialized training for multi-agent workflows, so that 
agents can compress their dialogue (e.g. develop a shorthand or formal language 
amongst themselves). We may see the development of inter-agent communication 
protocols optimized for LLMs – essentially a new language that is concise yet 
expressive for agent coordination. 

l Scalability and Heterogeneity: Today’s MAS×LLM examples often involve a 
handful of agents (two to ten). Scaling to dozens or hundreds of agents acting 
simultaneously presents new research questions. The system might exhibit complex 
dynamics (akin to swarm behavior) that we don’t fully understand yet. Efficiently 
allocating tasks among many agents, preventing overload or idle agents, and 
handling the combinatorial increase in interactions will require new algorithms 
(perhaps drawing from graph theory or network science). Moreover, future systems 
may mix heterogeneous agents: not all agents will be large LLMs; some could be 
smaller models or rule-based bots specialized in simple tasks, coordinated by a few 
LLM “leader” agents. Finding the right mix and integration between learning-based 
agents and traditional MAS algorithms (like multi-agent reinforcement learning) is 
an exciting direction for future work. 

Despite these challenges, the trend is clear: collaborative multi-agent intelligence is 
poised to become a cornerstone of advanced AI systems. Progress in the next few years 
may yield standardized frameworks (with better efficiency and safety), as well as deeper 
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theoretical understanding of emergent behaviors in LLM agent societies. We expect to 
see MAS×LLM applications flourish in areas like complex decision support, autonomous 
research (AI agents collaborating to synthesize information or discover new knowledge), 
and adaptive system design (teams of agents that can reconfigure themselves to solve 
novel tasks). The convergence of systems engineering principles with AI – exemplified 
by the organizational LLM paradigm – will also draw interdisciplinary collaboration 
from fields like cognitive science, economics, and sociology to inform how we design 
and manage these agent ecosystems. 
 
Conclusion 

The integration of multi-agent system architectures with large language models 
represents a promising frontier in AI. By marrying the organizational strengths of MAS 
(structure, specialization, collaboration) with the cognitive strengths of LLMs (flexible 
understanding, reasoning, linguistic skill), we can build AI systems that are more 
powerful, robust, and adaptable than ever. Early frameworks like AutoGen and CrewAI, 
and innovative paradigms like MetaGPT’s AI company and CAMEL’s role-playing 
agents, have demonstrated the potential of this fusion. These systems hint at a future 
where AI teams work alongside humans on complex problems – a true realization of 
collaborative intelligence. There remain open challenges in coordination, efficiency, and 
alignment, but the rapid progress from 2023 to 2025 suggests that solutions are on the 
horizon. For the broader systems engineering and interdisciplinary community, 
MAS×LLM offers a rich new design space: one where insights from software 
architecture, organizational theory, and human teamwork can inform the creation of 
coherent, reliable multi-agent intelligent systems. The coming years will likely witness 
the maturation of this field from exploratory demos to real-world deployments, unlocking 
AI capabilities that neither large models nor traditional agents could achieve alone. 

 

Reference 

[1] IBM, “ChatDev: An exploration of collective intelligence using AI agents,” IBM Think, 
[Online]. Available: https://www.ibm.com/think/topics/chatdev 
[2] G. Li, H. A. A. Hammoud, H. Itani, D. Khizbullin, and B. Ghanem, “CAMEL: 
communicative agents for ‘mind’ exploration of large language model society,” in Proc. 37th Int. 
Conf. Neural Inf. Process. Syst. (NeurIPS), Red Hook, NY, USA: Curran Associates Inc., 2023, 
Art. no. 2264, pp. 51991–52008. 
[3]  Q. Wu, G. Bansal, J. Zhang, Y. Wu, B. Li, E. Zhu, L. Jiang, X. Zhang, S. Zhang, J. Liu, A. H. 
Awadallah, R. W. White, D. Burger, and C. Wang, “AutoGen: Enabling next-gen LLM 
applications via multi-agent conversation,”  preprint arXiv:2308.08155, 2023. 
[4] Microsoft, “Agent chat: Multi-agent conversation framework in AutoGen,” AutoGen 
Documentation, Accessed: Jun. 2, 2025. [Online]. Available: 
https://microsoft.github.io/autogen/0.2/docs/Use-Cases/agent_chat/ 
[5]  Medium, “Building a multi-agent system using CrewAI,” Medium, Dec. 13, 2023. [Online]. 
Available: https://medium.com/pythoneers/building-a-multi-agent-system-using-crewai-
a7305450253e 

https://www.ibm.com/think/topics/chatdev


 8 

[6] S. Hong, X. Zheng, J. Chen, Y. Cheng, J. Wang, C. Zhang, L. Zhou, and C. Wu, “MetaGPT: 
Meta programming for multi-agent collaborative framework,”  preprint arXiv:2308.00352, 2023. 
[7]  OpenAI, “New tools for building agents: Responses API, tool use capabilities, and Agents 
SDK,” OpenAI, Mar. 11, 2025. [Online]. Available: https://openai.com/index/new-tools-for-
building-agents/ (accessed Jun. 2, 2025). 
[8]  Y. Zhang, X. Yang, S. Feng, D. Wang, Y. Zhang, and K. Song, “Can LLMs beat humans in 
debating? A dynamic multi-agent framework for competitive debate,”  preprint arXiv:2408.04472, 
2024. 
[9] Y. Du, S. Li, A. Torralba, J. B. Tenenbaum, and I. Mordatch, “Improving factuality and 
reasoning in language models through multiagent debate,” in Proc. 40th Int. Conf. Machine 
Learning (ICML), 2023. 
[10]   ai‑agents‑qa‑bot, “Multi‑agent debate: How can we build a smarter AI,” Reddit, May 2025. 
[Online]. Available: 
https://www.reddit.com/r/AI_Agents/comments/1k2vlju/multiagent_debate_how_can_we_build_
a_smarter_ai/ (accessed Jun. 2, 2025). 
[11]  J. S. Park, J. O'Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S. Bernstein, “Generative 
agents: Interactive simulacra of human behavior,” in *Proc. 36th Annu. ACM Symp. User 
Interface Softw. Technol. (UIST)*, Oct. 2023, pp. 1–22. 
[12]  L. Weng, “LLM‑Powered Autonomous Agents,” Lil’Log, Jun. 23, 2023. [Online]. Available: 
https://lilianweng.github.io/posts/2023-06-23-agent/ (accessed Jun. 2, 2025). 

 


