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I. INTRODUCTION

The rapid advancement of large language models (LLMs),
coupled with breakthroughs in electronic information tech-
nology, has significantly accelerated progress across multi-
ple disciplines. As a pioneering force in technological and
scientific innovation, aerospace technology operates in an
inherently high-risk and unpredictable domain, navigating the
complexities of extreme space environments. Consequently, it
demands exceptional levels of reliability, performance, inte-
gration, and cost efficiency [1], [2]. Despite over a decade
of evolution, the commercial aerospace sector has established
a transformative paradigm for space technology and indus-
trial development. Nevertheless, it continues to grapple with
unresolved technical constraints, many of which are uniquely
distinct from challenges encountered in terrestrial applications.
Within this evolving landscape, LLMs are poised to drive
paradigm shifts in innovation methodologies and application
frameworks, fostering a new era of intelligence-driven ad-
vancements in commercial aerospace technology. As shown
below, vehicle design and Integrated Circuit design could be
aid by LLM for efficiency improvement and fault tolerant,
human machine interface could play a great role empowered
by LLM, and LLM also could bring higher levels of autonomy
to mission planning and control. (Fig. 1)

II. CORE CHALLENGES IN COMMERCIAL AEROSPACE
TECHNOLOGY

A. Balancing Cost Constraints and Reliability Requirements

Space missions operate within an inherently hostile environ-
ment, where extreme conditions impose substantial challenges
and risks. The reliability of spacecraft and mission systems
must surpass that of most other industries, necessitating
rigorous engineering standards. Using decades of accumu-
lated expertise, leading aerospace research institutions have
established a comprehensive reliability assurance framework
encompassing the entire life cycle from design and mate-
rial selection to manufacturing, testing, and verification [7].
Despite the significant financial commitments required, these
measures have been instrumental in driving the steady and
sustained advancement of aerospace technology [8]. However,
as the commercial aerospace sector accelerates the deployment
of space missions and spacecraft, the conventional paradigm
of achieving high reliability at exorbitant costs is increasingly
constraining technological evolution. To enable the scalability

and diversification of future space missions, striking an opti-
mal balance between cost efficiency and system reliability has
emerged as a critical engineering challenge.

B. Performance Optimization Under Resource Constraints
Commercial aerospace technologies are progressing to-

ward higher performance benchmarks across multiple do-
mains. In aerospace communication, advancements are driving
increased transmission frequency, power, and data transfer
speed. Aerospace situational awareness is benefiting from
higher spatial and temporal resolution alongside expanded cov-
erage. Meanwhile, aerospace computing is achieving greater
computational power, efficiency, and system integration, while
aerospace control systems are enhancing sensitivity, precision,
and operational complexity. However, these performance gains
come at the cost of increased resource consumption [9].
Given the stringent constraints on critical resources—such as
volume, weight, power consumption, and cost—achieving an
optimal balance between capability and efficiency remains a
fundamental and enduring objective in aerospace technology
development [10].

C. Task Execution Under Environmental Uncertainty
Despite decades of aerospace exploration, the vast repos-

itory of accumulated experience and data represents only a
fraction of what is necessary for a comprehensive understand-
ing of space’s complexities. A major challenge remains in
executing well-defined tasks through meticulous planning and
design, particularly when boundary conditions are difficult to
constrain and operational resources are inherently limited [11].
Meanwhile, the commercial aerospace sector has undergone a
fundamental transformation, evolving from a high-cost, low-
production, and diverse system architecture paradigm to one
driven by scalability, standardization, and cost efficiency. The
rapid advancement of large language models (LLMs) and
the increasing integration of artificial intelligence are set to
redefine this landscape, ushering in a new era of intelligent
aerospace systems. Consequently, the imperative to embed
intelligence across all levels—including computing, modeling,
and data analytics—has become increasingly critical, driving
the next wave of technological innovation in commercial
aerospace.

III. TECHNICAL FOUNDATIONS FOR LLM INTEGRATION
IN AEROSPACE

The intelligent development with LLMs of commercial
aerospace field also needs a new ecology like other indus-



Fig. 1. Typical Applications of LLMs in the Commercial Aerospace Field. [3]–[6]

tries, which including Open Structure Digital Development
Platform, Intelligent hardware, OS, Services and Intelligent
Facilities and Application. The differences are evident in the
personalized content of computational infrastructure, algo-
rithms, and data. (Fig. 2)

A. Computational Infrastructure for Space Applications

Contemporary advancements in electronic technologies are
rapidly approaching the fundamental limits of Moore’s Law,
posing significant challenges for the deployment of terrestrial
computing chips in the extreme conditions of space. The
constraints of current semiconductor manufacturing processes
and material properties exacerbate these challenges, particu-
larly for silicon-based chips utilizing sub-7 nm fabrication
processes, which are highly susceptible to space radiation
effects such as single-event latchup (SEL), single-event up-
set (SEU), and total ionizing dose (TID). While emerging
technologies—including Silicon-On-Insulator (SOI) architec-
tures, quantum computing, photonic computing, quantum spin
memory, and neuromorphic computing—offer potential ad-
vancements in radiation resistance, they have yet to fully
satisfy the stringent reliability and durability requirements
for space-grade applications. Furthermore, the integration of
ultra-high-performance intelligent chips necessitates signifi-
cant power consumption and complex thermal management,
introducing substantial operational risks and escalating costs
in the harsh space environment. Addressing these limitations
requires a paradigm shift in space-optimized chip design,
prioritizing high reliability, efficiency, and resilience, while
reducing development costs through scalable production and
breakthrough innovations. These advancements are critical to
the integration of LLMs in commercial aerospace, facilitating

the development of the next generation of intelligent space
systems.

B. Domain-Specific Algorithmic Adaptations

As a general-purpose technology, universal LLMs lack
the specificity required to fully address the unique demands
of commercial aerospace applications [12]. To support spe-
cialized tasks such as intelligent spacecraft design, mission
planning, and data governance, the development of domain-
specific LLMs is essential. This requires the implementation
of advanced techniques, including model compression, quan-
tization, knowledge distillation, and lightweight architectures
to ensure optimal performance in aerospace environments
[13], [14]. While the adaptation of LLMs mirrors trends in
other industries, aerospace presents distinctive challenges that
necessitate a deeply specialized and systematic approach. The
complexity and mission-critical nature of aerospace systems
demand the active involvement of senior experts, ensuring that
AI-driven solutions align with stringent operational and safety
requirements. Moreover, as real-time performance, safety, and
interpretability become increasingly critical, the development
of aerospace-specific LLMs must emphasize robustness, reli-
ability, and transparency, making these considerations funda-
mental to their design and deployment.

C. Data Acquisition and Quality Challenges

The commercial aerospace sector faces a significant dispar-
ity in data generation, accessibility, and storage compared to
other industries, posing substantial challenges for the integra-
tion of LLMs. The rate at which aerospace data is produced
and becomes available remains insufficient to meet the de-
manding computational requirements of existing LLMs, while
inherent limitations in data quality and credibility impede the
development of robust evaluation and verification frameworks.



Fig. 2. LLMs Application under Intelligent Development Foundation.

Additionally, the uncertainty associated with small-sample
datasets presents formidable obstacles, far exceeding those
encountered in other domains [15]. Although some space
missions attempt to simulate data acquisition and training
environments on Earth to assess feasibility, these methods
are primarily effective for deterministic tasks. In contrast,
mission scenarios characterized by high uncertainty exacerbate
the decline in data collection efficiency and model train-
ing effectiveness. Addressing these challenges necessitates a
fundamental paradigm shift in theoretical frameworks, em-
phasizing innovative methodologies for data acquisition, pro-
cessing, and model optimization. Advancing next-generation
theoretical approaches to bridge these gaps remains a critical
research priority in the evolution of commercial aerospace AI
applications.

IV. APPLICATIONS OF LARGE LANGUAGE MODELS IN
COMMERCIAL AEROSPACE

A. Spacecraft Design and Optimization

Harnessing their ability to process vast datasets and extract
complex patterns, LLMs introduce innovative methodologies

for spacecraft design, significantly enhancing the optimiza-
tion of subsystems and components. By leveraging data-
driven insights and advanced computational techniques, LLMs
accelerate design iterations and achieve optimization levels
beyond those attainable through traditional manual engineering
approaches [16]. Their application extends to architectural
design and optimization of ultra-large-scale high-reliability
aerospace chips, nanoscale sensor structures, and large-scale
phased-array composite antennas, enabling next-generation
advancements in aerospace engineering. Furthermore, through
adaptive design frameworks, LLMs facilitate real-time pa-
rameter adjustments in response to dynamic operational con-
straints, ensuring that spacecraft maintain optimal performance
across complex and unpredictable environments. This AI-
driven approach not only enhances design efficiency and
innovation cycles but also contributes to a substantial reduction
in research and development costs, paving the way for the
development of more cost-effective and scalable aerospace
technologies.



B. Mission Planning and Control

The integration of LLMs has the potential to revolutionize
mission planning and control, significantly enhancing both
efficiency and operational safety. Unlike traditional task plan-
ning methods, which depend heavily on human expertise and
are prone to challenges arising from environmental complexity
and uncertainty, LLMs enable the development of data-driven,
adaptive, and comprehensive mission strategies. By analyz-
ing historical mission data alongside real-time environmental
inputs, LLMs facilitate multi-objective optimization, simul-
taneously balancing factors such as energy efficiency, time
constraints, and safety considerations [17]. Moreover, through
onboard intelligent deployment, LLMs support real-time task
scheduling and dynamic adjustments, enhancing operational
agility and decision-making in collaboration with human oper-
ators [18]. This advanced capability marks a critical milestone
in the advancement of intelligent and autonomous aerospace
missions, paving the way for more adaptive, efficient, and
resilient space operations in the future.

C. Data Analysis and Decision Support Systems

In the commercial aerospace sector, the collection, anal-
ysis, and strategic utilization of data are fundamental to
informed decision-making and operational efficiency. Using
comprehensive aerospace datasets, user feedback, and robust
data governance frameworks, LLMs introduce a transformative
approach to decision support systems, allowing the iden-
tification of underlying inefficiencies and hidden patterns.
This capability drives breakthrough advancements in real-
time system monitoring, fault diagnosis, lifespan prediction,
anomaly detection, and target forecasting—all of which are
critical to spacecraft operations and mission management [19].
Through the integration of these intelligent capabilities, LLMs
enhance analytical precision and predictive insights, signifi-
cantly improving the reliability, safety, and success rate of
space missions. Ultimately, this technological evolution paves
the way for a future defined by autonomous and intelligent
aerospace operations.
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