Heterogeneous Facial Image Synthesis

Nannan Wang, Dacheng Tao, Xinbo Gao, Xuelong Li, Jie Li



What's
Heterogeneous
Images

Sketch

Different Modalities

g

Near-Infrared

Gray-scale photo



Contents

* Heterogeneous Facial Image Synthesis

— Resolution: Low <= High (Scaling, Super-Resolution)

— Color: Color €-> gray-scale (color2gray, pseudo-color)

— Modality:

Near infrared image <-> Visible image

Near infrared image €<-> Thermal infrared image
Thermal infrared image €<-> Visible image

CT image €<-> MRI

Photo €-> Sketch (The focus of this tutorial)

Traditional Chinese Painting €-> Oil Painting



Photo vs. Sketch




Applications

(1) Conventional Homogeneous
Image Processing
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Direct Retrieval

f Y

Photo set :

Query Sketch

Identify a person by a sketch



All<50!

Performance Evaluation

OTA
Laplacianfaces
KPCA

Eigenfaces '—\

36.7%
27.8% 47.8%

. ' 15.6%

KPCA: Kernel PCA
OTA: Offline Tensor Analysis

Why direct retrieval failed?



Why direct retrieval failed?

Visible image Sketch Portrait Oil Painting Line Drawing Caricature

Characteristics: Challenges

* Differently expressed j‘> « Complicated Mapping

* Highly Rendered * Diverse Quality Assessment Metrics

* Bold Exaggerated *Difficult to analyse their contents



Solutions—Sketch Synthesis

Retrieval

Query Sketch
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Development Timeline of Representative Methods

Subspace learning-based methods
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Notes:

E-HMM: Embedded Hidden Markov Models MRF: Markov Random Fields

SFS: Sparse Feature Selection
LLE: Locally Linear Embedding MWEF: Markov Weight Fields



General Pipeline of Sketch-Photo Synthesis

--------------------------------------------------------------------------------
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~ Machine
- learning -

( Learning stage )

~ Photo transformation ( Transformation stage )
- Sketch transformation '-@
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Subspace Learning

Subspace learning refers to the technique of finding a
subspace R™ embedded in a high dimensional space R"(n >
m).

€ Linear subspace learning (e.g. principal component analysis):

it is mainly achieves by a projection matrix U € R™™, which is learned from
training examples. The matrix U can always be calculated by solving a standard
eigenvalue decomposition problem or generalized eigenvalue decomposition problem:
Au; = ABu;
Given an input image f € R", we can find its projection on subspace R™ from
fproc = UTf-
€ Nonlinear subspace learning (such as locally linear embedding)

It mainly refers to manifold learning. The concept of constructing a local
neighborhood has been explored since the methods of such category have no explicit
mapping function.

[N.-N. Wang, et al., [JCV13]
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Eigensketchtransformation

Principal
Component Analysis
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[X.-O. Tang et al., ICIP 02, ICCV 03, CSVT 04]
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LLE-based Method

[Q.-S. Liu et al., CVPR 05]
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Sparse Representation

minll¢lly + Al 4c - x,
/ \l\ NP-hard!

Sparse coefficient vector A signal
Overcompleted dictionary

N 4

min(c|l; + 2llAc — x||, Convex



Sparse Representation-based Sketch Synthesis

Assuming sketch patch
and corresponding photo
patch have the same
sparse representation!

photo patches sketch patches

\ }

Joint training for coupled dictionary D,;, D;

& D, gDsi [L. Chang et al., ICPR10]

‘_ ;,. - I:b I:b - Target
; h_';, Ci patih
‘ t patch  Sparse coefficient vector
Input photo

Refer to [S. —-L. Wang et al., CVPR12] for having different
sparse representation
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SFS-based Method

Motivation

(1) The defects of K-nearest neighbors-based synthesis algorithms: the
number of nearest neighbors is fixed but not adaptive (can be solved
by sparse feature selection, SFS)

Input Photo = K-NN SFS

[X.-B. Gao et al., ICIG2011, ICIP2011, CSVT12, PRL13]



SFS-based Method

Motivation

(2)

! !
Sketch drawn Synthesized sketch Resid
by the artist by K-NN-based method esidue

(can be compensated by
SVR-based hallucination)

[X.-B. Gao et al., ICIG2011, ICIP2011, CSVT12, PRL13]



SFS-based Method

Training Image Pairs

Framework

P~

Support Vector Regression |
(SVR)

% Sparse feature selection (SFS)
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Source input
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(b) Residue compensation . n (a) Initial estimation

[X.-B. Gao et al., ICIG2011, ICIP2011,
CSVT12, PRL13]

Target sketch




SFS-based Method

Training image pairs

Partition mask

u @ K is adaptively
determined Sparse Representation
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Initial Estimation



SFS-based Method

Training stage

Partition
mask
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[N.-N. Wang, X. -B. Gao, et al., PRL13]



SFS-based Method

Example Results-Synthesized Sketches

Input Photo

Results of SES

Results of SFS-SVR




SFS-based Method

Example Results-Synthesized Photos

Input Sketch

Results of SES

Results of SFS-SVR




S F S_ b ase d M et h o) d Example Results-Comparisons with KNN based method

Input Photo

Results of LLE

Results of SFS-SVR

-

LLE: locally linear embedding-based method



SFS-based Method

Face Recognition

B T Y T T

Recognition Rate(%)

Image Quality
Assessment (IQA)

-
e
o

LLE E-HMM SES SFS-SVR

0.0921 0.0948 0.0956 0.0972
E-HMM: embedded hidden Markov models-based method
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Local Regression-based Method

Training image pairs

Partition mask
%@
u @ K is pre-defined

n = = m = W m @ m = Local regression model
= B i - -
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Local Regression-based Method

Regression methods

@ K Nearest Neighbor (KNN)

NN _ {s(p, p,), if KNN

_ s(+) is the similarity measurement metric
0, otherwise

@ Least Squares (LS)

wl® = argmin

2

p _Zwipi

w
@ Ridge Regression (RR) 5
wl® = argmin |p — Z wipi| + A|w],
w
@ Lasso 2
wl® = argmin |p — Z wip;i| + Alw|;
w

[N.-Y. Jiet al., ICIG11]
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Bayesian Inference-based Framework

Given that [I;;,, and [,,; denote the input (observation) and output image (to be
estimated) for FH, respectively, the maximum a posteriori (MAP) decision rule in
Bayesian statistics for FH is written as:

out = argmax P(Ioye|Iin)
Tout
= argmax P (I [1y,e)P(Ioyt)

Iout

Partition mask

Source input
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E-HMM-based Methods

Sketch-photo Relationship Modeling;:
e Statistical Method - MRF: Markov Random Field
e HMM: Hidden Markov Model

Barrier

Observed Sequence: ‘ ‘ ‘ ‘ ‘ ‘ ' ‘



E-HMM-based Methods

Jar 3

Hidden Markov Model: Jar 1 Jar 2

A= (I1,A,B,N,M)

Param. Name Example
N State Number Number of Jar: N =3
M Number of Observation Values Color Number of Balls: M =4
A State Transition Probability Matrix P{Jari->Jarj},i,)=1,23
B Observation Probability Matrix P{Ball.color_Jar i}

I1 Initial State Distribution P{Ball 1 from Jar i}




E-HMM-based Methods

2D-HMM

S00

OOOO‘QC

() (O—=( ) —()
/R
~ X 48

FIaW Flaw
Restricted to fixed-size face image _ _ i
The signal is transformed to 1D observation » High computational complexity




E-HMM-based Methods

Pseudo 2D HMM

Forehead

Eyes

Nose

Mouth

Chin

Flaw

’ C The signal is transformed to 1D observation sequence with a zigzag fashion )




E-HMM-based Methods

E-HMM Structure for Face Image

Horizontal direction 5

A, = {A(l), e, ANS))

k k k k
A = (I, A, A, Ny) A%© = m,%,4,%,8,%,N,0}
forehead o ‘~ & Embedded
Super states / ‘:, 0 0.0 I states
i, " d

S eye N
q
- p : A A A A A AN Parameters:
= arameters ()= )-»)-»0)-()
Q S I Initial distribution He(k)
o Initial d|str|-b-ut|on I nos g State transition matrix 4,
a3 State transition matrix A 000000 Observation probability matrix B, ®
8-, 2
o
=

B, = (b, (0,)}

Gaussian mixture model

Advantages of E-HMAM:
* It can extract the main 2D facial features and has a moderate computational complexity
* It is robust to the change of pose and environment.

[X.-B. Gao et al., ICASSP07, CSVTO08]



E-HMM-based Methods

Gaussian mixture model
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E-HMM-based Methods

Foundation of the E-HMM Theory

(Q1) Computing the output probability: given the image Forward-

observation sequence O = (04,05,*,01) and the E-HMM Backward
model A = {Il;, A, A}, how to get the output probability Algorithm
P(012)

(Q2) Decoding the state sequence: with the image Embedded

observation sequence O = (04,05,*,01) and the E-HMM

Viterbi
model A = {I1,, A;, A.}, how to determine the optimal state werbt
, , Algorithm
sequence Q = (q4,92,'*,qr) and the mixture indexes
M = (ml'm2'°"'mT)
(Q3) Estimating the model parameters: how to adjust the Baum-Welch
parameters of the E-HMM model A= {Il;, A, A} to Algorithm

maximize P(0|4)



E-HMM-based Methods

Face Representation Ability of E-HMM
o~

iinal i r A
(a) Original image It is shown that E-HMM

IS able to represent face

a. 6' well.

y,

O,

.
(b) Reconstructed image

OI j+n +

(a) Modeling by Baum-Welch algorithm (Q3)
(b) Reconstructed face by Viterbi algorithm (Q2)

|+m i

I*l*

o)

i+m, J+n+

L



E-HMM-based Methods

...................................................................................................

Sketch-photo
synthesis @ | . b
based on - =
E-HMM o State sequence g e
E * Vlterbl MlXtuI‘e lndICCS SketCh r—
S . . - o
5 decoding synthesis

..............................................................................................................................

[J.Zhong, X.-B. Gao et al., ICASSP07]



E-HMM-based Methods

Joint-training Process B HMM- AT TE_HMM_B
Decomposition
Training Feature T
image A extraction < E-HMM <>
Ttraining

Training Feature | features | . EM

—> . — Composition —» .
Image B extraction algorithm

[J. Zhong, X.-B. Gao et al., ICASSP07]

Observation vector=[gray value, Gaussian operator, Laplacian operator, horizontal derivative and vertical derivative]



E-HMM-based Methods

Basic idea of joint-training

bIZC (OOt) ck(o_t) — ZN (k)N(Ot, (k) \)

1 k - Him: i
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The E-HMMs of photo and sketch share the same state and same state transition probability matrix.

The mean values and the covariance matrixes in the same state are different.




E-HMM-based Methods

Selective Ensemble Learning

Erlterla 0| Iﬂ!lVI!U&l SElECtIOﬂ

» Individuals have good
Problem ) performance

» Individuals complement
each other well

solution 5

Given many solutions to a problem, we usually choose the best one as the final decision; while in selective
ensemble, the optimal decision is given by combining several complementary solutions with weights.

[Z.-H. Zhou et al., AIJ02]



E-HMM-based Methods

: 2

Selective
Ensemble

Normalization

°

Sketch-photo
synthesis -
based on sketch

E-HMM+SE

\ J

Reconstruct

[X -B. Gao et al., TCSVT 08] — M Synthesized

sketch



E-HMM-based Methods

Global = Local Strategy

» more specific information
» state estimation of EHMMs

This idea comes from the local linear embedding strategy.



E-HMM-based Methods

lLocaI strategy

4 )

Sketch-photo
synthesis Pseudo-sketcl
based on I A ST A A

E-HMM+SE — we } - iy
+Local = == =1 i

Assembling "

[X. -B. Gao et al., Neurocomputing 08, Signal Processing09]



E-HMM-based Methods

n A Loyy(ri.e)

-

Valri.c )=

R

2 Rou(r-€1) Averaging . : % -

e 'Cl% .

Low(ri.q) + Ryp(ri.cp)

Averaging overlapping areas

)

7
Image quilting % A=
7 s

Quilting overlapping areas



E-HMM-based Methods

Image Quilting
7

090000

T 1 R

Image quilting s > 0000 /.

=2 LA sos ke

| - 00000

o » Kesss
Quilting overlapping areas Graph of overlapping area

The difference between L,,(i,y;) and R,,(i,y;) ~» The cost of traversing (i, y;)

Dijkstra algorithm

v

The edge is determined by searching for the minimum cost path E* = {(1, y,), -, (. )}

E*= argminz Loy (i, ¥:) = Row (i, ¥)I?
E (i,yi)EE



E-HMM-based Methods




E-HMM-based Methods

& Quilting strategy

' Partitioning

Sketch-photo
synthesis based
on
E-HMM+SE+
Local+quilting

[B. Xiao, X. -B. Gao et al., Neurocomputing 2010]



E-HMM-based Methods

Y1 Y Vi1 Yy
z? Z ‘ ZT? Z, ‘ Iy = argmax P(Ioye, Z|1in)
e oo %

Ioyt, z
= argmax P(Iout; Z, Iin)
Iout, 2z
— asgmax P(z,1;,)P(,ytlz, 1)
out)Z
= argmax P(z,1;;,)P (I yy:|2)

Iout, z

Xl X2 XT 1 XT

Graphical illustration of the model E-HMM. Here
Xq,*, X7 and y4,---, Yy denote the observations
extracted from a photo-sketch pair respectively, i.e.
o, =[x;;y;], i=1,--,T. z4,---,Zy5 are hidden
variables

[N. -N. Wang, et al., IJCV13]

z* = argmax P(0;y, z|4p,)
VA
Oy = argmax P(0 yy4, |Z*»)'Si)
z

Here Ap, and A, represent the joint trained photo and sketch model respectively.
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MRF-based Methods

joint probability:
PUin Tous) = Py, xw, v 9 = | | weyo | [wa,vp)
(U1.J2) J
d)(xj,yj)/ ° @® Photo Patch Nodes x;
I @ Sketch Patch Nodes y;
‘P(le,XJ ) T
PUinloue) | | @032 PUnd) < | | Wex,3;)
k (jlljZ)Eg



MRF-based Methods

Training sketch-photo pairs

Input photo patch x;  photo patches sketch patches
\ J

K Nearest Neighbors

Neighborhood selection

[X. -G. Wang, X. -O. Tang, PAMI 09]



MRF-based Method

Example Results-Synthesized Sketches

Input Photo

Ground Truth

Synthesis Results




MRF-based Method

Example Results-Synthesized Photos

Input Sketch

Ground Truth

Synthesis Results
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Transductive Method

All above methods are based on inductive learning, which result in high losses for
test samples. This is because inductive learning minimizes the empirical loss for training
samples. The transductive method could incorporate the given test samples into the
learning process and optimize the performance on these test samples.

®
o \V®
W\ W,
U@
1
1
1
W,
W
. Photo Patches ) VVIZ(
@  Sketch Patches L)

(@)

® & 6 ©

Photo Patches

[N. -N. Wang, TNNLS13]
Sketch Patches
Photo Patch Candidates

Sketch Patch Candidates

[llustration of the constructed graph. (a) Graph G = (V, E,W). Photo patches (or sketch patches) can represent
either training photo patches (training sketch patches) or test photo patches (target sketch patches)
because we will construct the model from the perspective of transductive learning. (b) Illustration of the
candidate selection criterion. The number of nearest neighbors is K = 4. Weights on edges illustrate the

similarity between a patch and its candidates.



Transductive Method

Training Image Pairs
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I Partition mask

weights of patches in training set
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Transductive Method

P(Y,X,W) = P(Y,X|W)P(W)
= P(Y|X, W)P(X|W)P(W)
= P(Y|W)P(X|W)P(W)

—
| s

v

Y P(Iin|loye) < P(Y|W)P(X|W)
P(I < P(W
[llustration of the generative process of photo patches and ( out) ( )
sketch patches from common hidden parameters.
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207 keV

2 2
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2072 252
dp iev ds
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Vi Ym e

P(Y,X,W)x min tr(YTMY)+ atr(XTMX) + B
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Transductive Method

Optimization

Fixing W, update y4, -+, yu by solving:

min tr(YTMY) (1)
Y1 YM

Then fixing y4, -+, Yu to be the above obtained value, and
update W by solving

2

min||U — WU + 8 Z

Z W Y, ) — Z w,y,0"
(iDee keN (i) leN())

s.t. Wy =0W; >0Vviey whereU=I[X \/aY]
keV

The optimization method for solving (2) can refer to [H. Zhou et al. CVPR12]



Transductive Method

Effect of neighborhood size K




Transductive Method

Synthesized Sketches

(a)(d): Input Photos; (c)(f): Output Sketches; (b)(e): Ground Truth



Transductive Method

Synthesized Photos

(a)(d): Input Sketches; (c)(f): Output photos; (b)(e): Ground Truth



Transductive Method

Comparison with MRF-based Methods




Transductive Method

Comparison with MRF-based Methods

Input Photos

LLE-based
method

MWF-based
method

Transductive
method

LLE: Locally Linear Embedding
MWEF: Markov Weight Fields



Transductive Method

Comparison with MRF-based Methods

Input Photos !

LLE-based
method

MWF-based
method

Transductive
method

LLE: Locally Linear Embedding
MWEF: Markov Weight Fields



Transductive Method

Face Recognition on CUHK Sketch Database

Eigensketch MRF-sketch MRF-photo T-Sketch T-Photo
Fisherface 79.7 89.3 93.3 91.3 96.3
NLDA 84.0 90.7 94.7 93.7 96.3
RS-LDA 90.0 93.3 96.3 95.7 97.7

NLDA: null space linear discriminant analysis

RS-LDA: random sampling linear discriminant analysis
Eigensektch: eigensketchtransformation method
MRF-sketch: MRF-based sketch synthesis

MRF-photo: MRF-based photo synthesis

T-sketch: Transductive sketch synthesis

T-photo: Transductive photo synthesis
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Conclusions

€ Subspace learning-based and sparse representation-based methods synthesize
each image patch independently neglecting the neighboring relation. This results
in the incompatibility between neighboring patches. Bayesian inference based
approaches construct the model from the neighborhood relation and thus have
promising results;

€ Linear subspace learning-based methods synthesize a whole image which may
lead to some critical local details lost;

E-HMM-based method are most time-consuming due to the iterative Vieterbi
decoding algorithm; However, E-HMM-based methods need most less examples to
synthesize images.

€ In all methods which explore kNN, the kNN process is the most time consuming
part.



Open problems

Sketch-photo Further Sketch-photo

Transformation research Recognition

Qual

aSSess
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