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Abstract This paper comprehensively surveys the devel-
opment of face hallucination (FH), including both face
super-resolution and face sketch-photo synthesis techniques.
Indeed, these two techniques share the same objective of
inferring a target face image (e.g. high-resolution face
image, face sketch and face photo) from a corresponding
source input (e.g. low-resolution face image, face photo
and face sketch). Considering the critical role of image
interpretation in modern intelligent systems for authenti-
cation, surveillance, law enforcement, security control, and
entertainment, FH has attracted growing attention in recent
years. Existing FH methods can be grouped into four cat-
egories: Bayesian inference approaches, subspace learn-
ing approaches, a combination of Bayesian inference and
subspace learning approaches, and sparse representation-
based approaches. In spite of achieving a certain level of
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development, FH is limited in its success by complex applica-
tion conditions such as variant illuminations, poses, or views.
This paper provides a holistic understanding and deep insight
into FH, and presents a comparative analysis of representa-
tive methods and promising future directions.

Keywords Face hallucination · Face sketch-photo
synthesis · Face super-resolution · Heterogeneous image
transformation

1 Introduction

Face images, compared to other kinds of biometrics such as
fingerprint, iris, and retina, can be acquired in a more con-
venient, natural, and direct way because they are collected
in a non-intrusive manner (Jain et al. 2000). Consequently,
a growing number of face image-based applications have
been developed and investigated. These include face detec-
tion (Zhang and Zhang 2010), alignment (Liu 2009), track-
ing (Ong and Bowden 2011), modeling (Tao et al. 2008),
and recognition (Chellappa et al. 1995; Zhao et al. 2003)
for security control, surveillance monitoring, authentication,
biometrics, digital entertainment and rendered services for
a legitimate user only, and age synthesis and estimation (Fu
et al. 2010) for explosively emerging real-world applications
such as forensic art, electronic customer relationship man-
agement, and cosmetology.

The intrinsic fluidity of face imaging and uncontrollable
extrinsic imaging conditions (such as an intended target
deliberately concealing his/her identity) means that suitable
face images for processing and identifying a person can-
not always be obtained. In cases where low-resolution face
images are acquired by live surveillance cameras at a dis-
tance or face sketches are drawn by an artist, however, face
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hallucination (FH) techniques can be used to enhance low-
resolution images and transform sketches to photos and pho-
tos to sketches for the subsequent utilizations.

It has been widely acknowledged that FH can be used to
generate imagery or information from an input source face
image with different modalities (resolution, style, or imag-
ing modes) (Baker and Kanade 2000a). In this paper, FH
refers to both face super-resolution (FSR) and face sketch-
photo synthesis (FSPS) because they share the similar intrin-
sic mathematical model; that is, they infer an image lying
in an image space from its corresponding counterpart lying
in another space. A brief introduction to both techniques is
given below.

Low-resolution images impose hard restrictions on real
world applications dealing with face recognition and high-
resolution display. We intend to approximate high-resolution
images from low-resolution images, using the
super-resolution technique. Available super-resolution tech-
niques can be grouped into two categories: reconstruction-
based approaches and learning-based approaches.
Reconstruction-based methods estimate a high-resolution
image from a sequence of blurred and down-sampled low-
resolution images (Elad and Feuer 1997, 1999; Hardie et al.
1997) and there are inherent limitations in relation to increas-
ing the magnification factor (Baker and Kanade 2002). In
recent years, learning-based approaches have been proposed
and obtained competitive results for various low-level vision
tasks (Fan and Yeung 2007; Freeman and Pasztor 1999;
Freeman et al. 2000, 2002), including image hallucination
(Sun et al. 2003; Xiong et al. 2009), image analogy (Hertz-
mann et al. 2001), image stitching (Brown and Lowe 2007),
cartoon character synthesis (Yu et al. 2012b,a), and texture
synthesis (Efros and Leung 1999; Efros and Freeman 2001;
Zalesny et al. 2005). Learning-based methods explore map-
ping relations between high- and low-resolution image pairs
to infer high- resolution images from their low-resolution
counterparts. Compared to reconstruction-based methods,
learning-based methods achieve higher magnification factors
and better visual quality, especially for single-image super-
resolution (Lin et al. 2007, 2008). This is also the main reason
underlying the proposal of FSR algorithms. The application
scenario therefore needs to be constrained in such a way that
more specific prior knowledge, e.g. human skin color, the
strong structure of faces, and gender information, can be fur-
ther exploited to improve the estimation.

In searching for criminal suspects, a photo of a criminal
suspect is not always available and thus the best substitute
may be a sketch drawn by an artist with the aid of eyewit-
nesses. However, because of the great difference between
face sketches and face photos in both geometry and texture,
using direct face recognition to identify a criminal suspect
performs poorly when a sketch is compared with an existing
photo gallery (Gao et al. 2008b; Tang and Wang 2004). To

reduce the visual difference between sketches and photos,
sketches and photos can be transformed to the same modal-
ity. There are two ways to accomplish this: transformation
of the sketches to photos, or transformation of the photos to
sketches (FSPS for short). Note that an FSPS algorithm is
not constrained to face recognition but can also be applied
to digital entertainment (Iwashita et al. 1999; Koshimizu and
Tominaga 1999; Wang and Tang 2009; Yu et al. 2012b).

Both learning-based FSR and FSPS generate a target
image from a corresponding input source image by using
training image pairs (e.g. low- and high-resolution image
pairs and sketch-photo pairs) based on various machine learn-
ing algorithms. In the learning stage, learning-based FSR and
FSPS learn the underlying relation between training image
pairs and in the inference stage, the output target image cor-
responding to the input source image is predicted via the
learned mapping relations. Figure 1 illustrates the frame-
work for FSPS and FSR, from which we can see that the
main difference between the two techniques is that the trans-
formation between sketches and photos (FSPS) is invertible
while this reversibility is not required in FSR. The mapping
obtained in the learning stage is similar for these two dif-
ferent applications. It is symmetric for sketch synthesis and
photo synthesis, and a synthesis process can be completed by
switching the roles of sketches and photos of another synthe-
sis process. Thus, an FSPS model can be constructed from
a learning-based FSR model by adjusting the training image
pairs and features used as the input to the model. In this
paper, we therefore prefer not to differentiate between FSR
and FSPS algorithms when they are categorized, except as
noted.

As shown in Fig. 1, the mapping learned from the training
image pairs using a machine learning algorithm is critical to
the FH algorithm. This mapping may be explicit, such as a
function mapping from input to output, or implicit, in which
it is hidden in the model and relies on various approaches to
construct the output model. Based on the approaches applied
to the model construction, FH methods can be divided into
four categories: Bayesian inference framework, subspace
learning framework, combination of Bayesian inference and
subspace learning methods, and sparse representation meth-
ods. FH techniques in each of these four categories may be
further classified in a much more detailed manner. Figure
2 shows these different classes of FH algorithms in a tree
diagram.

Table 1 summarizes frequently used notations in this
paper. The rest of this paper is organized as follows. Meth-
ods under Bayesian inference framework are described and
comprehensively analyzed in Sect. 2, and a description of
the subspace learning-based methods follows in Sect. 3. A
compound framework that combines Bayesian inference and
subspace learning-based methods is presented in Sect. 4. Sec-
tion 5 discusses several methods for FH in the realm of sparse
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Fig. 1 Diagram of face hallucination

Fig. 2 Tree diagram for different categories of face hallucination algorithms

Table 1 Notations

Symbols Descriptions

Iin Input of FH, used when FSR is not distinguished from FSPS

Iout Output of FH corresponding to Iin

IH High-resolution image for FSR

IL Low-resolution image corresponding to IH

Ig
H Global high-resolution face image

used in some methods for FSR
Il

H Local high-resolution face image
corresponding to Ig

H used for FSR
IS Face sketch for FSPS

I P Face photo for FSPS

x, xi Sketch patch or high-resolution image patch, or
observation feature of a pixel on a sketch

y, yi Photo patch or low-resolution image patch, or
observation feature of a pixel on a photo

K Number of nearest neighbors

representation. A comparative analysis of these four cate-
gories and their performance are given in Sect. 6. Finally,
insights on recent trends and promising future directions in
this field are given in Sect. 7, and concluding remarks are
made in Sect. 8.

2 The Bayesian Inference Framework

Bayesian inference exploits evidence to update the state of
the uncertainty over competing probability models. Bayes’
theorem is critically important in Bayesian inference, and is
written as P(A|B) = P(B|A)P(A)

P(B)
, where A and B represent

two events in the event space (Gelman et al. 2003). Given
that Iin and Iout denote the input (observation) and output
image (to be estimated) for FH, respectively, the maximum a
posteriori (MAP) decision rule in Bayesian statistics for FH
is written as

123



Int J Comput Vis

I∗
out = argmax

Iout

P(Iout |Iin)

= argmax
Iout

P(Iin|Iout )P(Iout ). (1)

Since Iin is an observation, P(Iin) is a constant and it can be
ignored in Eq. (1). In the above equation, P(Iout ) is known
as the prior, which is learned from training images pairs,
and P(Iin|Iout ) is the likelihood and can also be taken as a
Gaussian form under the assumption that each pixel on Iin is
identically treated. For different methods under this frame-
work, P(Iin) and P(Iin|Iout ) take different concrete forms
which are discussed below. Figure 3 shows a diagram of the
Bayesian inference framework using face sketch synthesis as
an example, and the following figures show the face sketch
synthesis process only except for special explanation. In Fig.
3, the partition mask is applied to divide images into patches.
Holistic methods such as Tang and Wang (2002, 2003, 2004)
synthesized a sketch as a whole, thus the partition mask might
degenerate to an identical transformation which actually pre-
serve a whole image as itself.

2.1 Gradient-based Prior for Data Modeling

Baker and Kanade (2000a) proposed the first FH algorithm.
By treating FSR as predicting the lowest level of the Gaussian

Pyramid (Burt 1981; Burt and Adelson 1983), this method
processes in a pixel-wise manner and aims to improve the
face recognition performance.

The likelihood term P(Iin|Iout ) in Eq. (1) is given by:

P(Iin|Iout ) ∝ exp
{

− 1

2σ 2

∑
m,n

[
Gk(m, n)

−
∑
p,q

W(m, n, p, q)G0(p, q)
]2

}
,

(2)

where Gk ,k = 0, 1, . . . , N is the k-th level Gaussian pyra-
mid and the level 0 pyramid is the high-resolution image.
The subscripts to the sum index the corresponding pixel on
a specific Gaussian pyramid. The weight W(·) is a function
of down-sample factor which measures the number of over-
lapped low-resolution pixels and high-resolution pixels. σ 2

is the variance. The likelihood mainly considers the fidelity
between the low-resolution image and the down-sample ver-
sion of the high-resolution image to be predicted.

The prior P(Iout ) in Eq. (1) is learned from the spatial
distribution of image gradient vectors. The gradient vector
is given by the concatenation of Laplacian pyramids, the
horizontal and vertical first- and second-order derivatives
of Gaussian pyramids. The predicted gradient vector of the

Fig. 3 Bayesian inference framework for sketch synthesis
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high-resolution image corresponding to the low-resolution
input is copied from the gradient vector of a training high-
resolution image. This high-resolution image is identified
by searching the nearest gradient vector of the input low-
resolution image through all training low-resolution images.
Then the prior is modeled by the errors between the gradients
of the target high-resolution image and the above predicted
gradients. These errors are assumed to be i.i.d. and the prior
P(Iout ) can be modeled by a Gaussian distribution with vari-
ance σ 2∇ ,

P(Iout ) ∝ exp
{

− 1

2σ 2∇

∑
m,n

[
H0(G0)(m, n) − H0(m, n)

]2

− 1

2σ 2∇

∑
m,n

[
V0(G0(m, n)) − V0(m, n)

]2
}
, (3)

where H0(·) and V0(·) denote the actual horizontal and ver-
tical first order derivative of the Gaussian pyramids, and H0

and V0 are the corresponding predicted derivatives, respec-
tively.

Finally, the target high-resolution image is resolved from
the objective function, a combination of the likelihood model
P(Iin|Iout ) and the gradient prior model P(Iout ), by the gra-
dient descent method. The authors reported that this algo-
rithm enhanced face images by a factor of 8 (e.g. from
12 × 16 to 96 × 128). This method was further investigated
in their subsequent works (Baker and Kanade 2000b, 2002)
that demonstrated useful information provided by the recon-
struction constraints (i.e. the prior information) reduces with
the increase of the magnification factor.

Inspired by Baker and Kanade (2000a), the gradient-based
prior was carefully explored. Dedeoglu et al. (2004) explored
a similar idea for video hallucination and demonstrated the
resolution of a human face video by a factor of 16 from 8×6 to
128 × 96 . Since these methods search for the nearest neigh-
bor pixel by pixel, they are time-consuming; furthermore,
the pixel-based strategy is susceptible to noise. Unlike the
gradient feature extracted by Baker and Kanade (2000a), Su
et al. (2005) proposed the exploitation of a steerable pyra-
mid to model the prior generated by oriented steerable fil-
ters to extract multi-orientation and multi-scale information
of local low-level face features. With regard to the feature
of each pixel of the source input, its nearest neighbor was
chosen in a different way from the strategy in Baker and
Kanade (2000a,b) and Dedeoglu et al. (2004). Baker and
Kanade (2000a) searched the nearest neighbor of an input
pixel from the feature of pixels in the same location on the
training images. Su et al. (2005) found its nearest neighbor
from the feature of pixels around the location on the train-
ing images, which alleviates the requirements for exact face
alignment. However, this method is still subject to high com-
putation cost due to the high dimension of extracted features.

Their experimental results showed that they could enhance a
24 × 32 face image into its 96 × 128 counterpart.

2.2 Markov Random Fields (MRF)-based Method

MRFs (Li 2010) characterize the dependency relationship
between neighboring pixels or features. The principal con-
sideration is given by

P(f i |f 1, . . . , f N ) = P(f i |N(i)) (4)

where f i , i = 1, . . . , N is the i-th feature and N(i) denotes
the neighborhood. An image can be modeled by MRF; for
example, given that the intensity of each grid on images is the
variable, then the probability of an image intensity configu-
ration is usually the product of a data constraint term and a
smooth constraint term. The data constraint term models the
fidelity between the observation and the target output and
the smooth constraint models the local neighborhood rela-
tionship of the target output.

Freeman and Pasztor (1999), Freeman et al. (2000, 2002)
proposed an example-based learning framework for the low-
level vision problem and took super-resolution as one of its
applications. In their seminal works, images (low-resolution
images) and scenes (high-resolution images) were modeled
by MRFs. Both a scene Iout and its corresponding image Iin

are first divided into patches {x1, . . . , xN } and {y1, . . . , yN },
respectively. Each of these patches is represented as a node in
the Markov network as shown in Fig. 4. For any input image
patch, K nearest neighbors are searched from the training
image patches to construct the compatibility matrix �(x, y)
between image and scene nodes. Simultaneously, K target
scene candidate patches are collected from the training scene

Fig. 4 Illustration of the Markov network utilized in Freeman and
Pasztor (1999), Freeman et al. (2000)
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patches corresponding to the selected training image patches.
Then the neighborhood relationship (smooth constraint) is
constructed from the compatibility matrix �(x, y) between
neighboring scene nodes. The joint probability over a scene
Iout and its corresponding image Iin can be written as

P(Iin, Iout ) = P(x1, . . . , xN , y1, . . . , yN )

∝
∏
(i, j)

�(xi , x j )
∏

k

�(xk, yk), (5)

where (i, j) indexs a pair of neighboring scene nodes i and
j . The compatibility functions �(xi , x j ) and �(xk, yk) are
defined by

�(xl
i , xm

j ) = exp−‖dl
j i −dm

i j ‖
2
/2σ 2

s ,

�(xl
k, yk) = exp−‖yl

k−yk‖2
/2σ 2

p , (6)

where dl
j i (l = 1, . . . , K ) is a vector of the pixel intensities

of the l-th possible candidate for the scene patch xi and lies
in the overlap region with the patch x j . yl

k(l = 1, . . . , K ) is
the l-th nearest neighbor of the image patch yk . σs and σp

are two predefined parameters. Equations (1) and (5) indicate
that maximizing a posterior is equivalent to maximizing the
joint probability P(Iout , Iin) and then we have

P(Iin|Iout ) ∝
∏

k

�(xk, yk),

P(Iout ) ∝
∏
(i, j)

�(xi , x j ). (7)

Bayesian belief propagation (Pear 1988; Yedidia et al. 2001)
is used to find a local maximum of the posterior probability
for the target scene node. The integrated scene is obtained
by merging these patches with an average of the overlapping
regions. In Bishop et al. (2003), the model was applied to
video sequences, but introduces severe video artifacts. To
reduce the number of artifacts and to obtain coherent resultant
videos, an ad-hoc solution that re-uses the high-resolution
solutions is adopted.

Inspired by the promising results obtained by the patch-
based nonparametric sampling used in texture synthesis
(Bonet 1997; Chen et al. 2001; Efros and Leung 1999; Efros
and Freeman 2001; Liang et al. 2001), Liu et al. (2001, 2007a)
proposed a nonparametric MRF-based FSR method. This
two-step global and local modeling framework assumes that
a high-resolution face image is naturally a composition of
two parts-a global face image corresponding to the low fre-
quency and a local face image corresponding to middle and
high frequencies,

Iout = IH = Il
H + Ig

H . (8)

Under this assumption, the objective function (1) can be
rewritten as

I∗
out = I∗

H = argmax
Ig

H ,Il
H

P(IL |Ig
H + Il

H )P(Il
H |Ig

H )P(Ig
H ).

(9)

Since IL mainly consists of the low-frequency part of
IH , then P(IL |Ig

H + Il
H ) = P(IL |Ig

H ). The likelihood
P(Iin|Iout ) and the prior P(Iout ) are

P(Iin|Iout ) = P(IL |Ig
H ),

P(Iout ) = P(Il
H |Ig

H )P(Ig
H ). (10)

In contrast to the aforementioned methods, Liu et al.
(2001, 2007a) did not model the likelihood and prior,
respectively. They constructed a global model for the terms
P(IL |Ig

H )P(Ig
H ) by using PCA. Given the global face image

Ig
H , a patch-based nonparametric Markov network similar

to the MRF model in Freeman and Pasztor (1999), Free-
man et al. (2000, 2002) is built to model the residual local
face image Il

H (i.e. the residual term P(Il
H |Ig

H )). By com-
bining Ig

H and Il
H , the target high-resolution image can be

obtained. Related works include Fan and Yeung (2007), Hsu
et al. (2009), Jia and Gong (2006, 2008), Kumar and Aravind
(2008b), Liang et al. (2010), Liu et al. (2005b,c,d, 2007b),
Tanveer and Iqbal (2010), Wang et al. (2011), Zhang et al.
(2008, 2011a), and Zhuang et al. (2007).

The aforementioned methods construct the same pairwise
edge-based compatibility functions for all patches on a face
image. In contrast to this, Stephenson and Chen (2006) pro-
posed a method that structured several different pairwise
compatibility functions, in which patches lying on the same
region or the same group shared the same compatibility func-
tion. This method improves the probability of incorporating
more relevant information between a query image patch and
the selected nearest neighbors. Subsequently, similar approx-
imation procedures (Freeman et al. 2000) are applied to the
estimation of the target high-resolution image.

Considering the strong structural property of face images,
the uniform scale of MRF has limited ability to address the
long range dependency among local patches; thus, Wang and
Tang proposed a multi-scale MRF model for FSPS (Wang and
Tang 2009). Their method constructs the pairwise compati-
bility functions through the nearest neighbors searched from
a training set across different scales. Under the MAP rule,
the best matched neighbor patch is then taken as the target
patch corresponding to the input image patch. This method
uses the image quilting (Efros and Freeman 2001) technique
to stitch the overlapping areas, which reduces both the blur-
ring effect due to the strategy of averaging the overlapping
areas and the blocking artifacts because of the incompati-
ble nearest neighbor patches. The authors also performed
subspace face recognition (Wang and Tang 2006) by using
synthesized sketches and photos. They extended this work to
lighting and pose robust FSPS (Zhang et al. 2010) by tak-
ing photo-to-photo patch matching, photo-to-sketch patch
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matching, shape priors, intensity compatibility, and gradient
compatibility into account. The experimental results show
that their proposed method achieved a better visual effect
than the results reported in Wang and Tang (2009).

Zhou et al. (2012) claimed that above MRF-based sketch-
photo synthesis method (Wang and Tang 2009) had two
major drawbacks: cannot synthesize new sketch patches (i.e.
each patch of final target output is from the training set)
and NP-hard for the optimization problem in solving the
MRF model. Then they proposed a weighted Markov ran-
dom fields method (Zhou et al. 2012) to model the relation
between sketch and photo patches. By a linear combination
of selected K candidate sketch patches, their method could
synthesize new sketch patches existing not in the training
sketch set. Furthermore, the objective function is a convex
optimization problem which has the unique optimal solution.
Experimental results illustrated they indeed improved some
deformation yet not as clear as that generated by Wang and
Tang (2009).

Aforementioned methods are based on inductive learn-
ing which may result in high loss for test samples. This is
because inductive learning minimizes the empirical loss for
training examples. Wang et al. (2013b) proposed a transduc-
tive face sketch-photo synthesis method that took the given
test samples into the learning process to minimize the loss
on these test samples. The generative process of both pho-
tos and sketches could be modeled by Bayesian inference.
The relation between sketch and photo patches are modeled
by a graphical model similarly as weighted MRFs method
(Zhou et al. 2012). Experimental results illustrate this method
achieves state-of-the-art performance both from subjective
(synthesized examples) and objective (face recognition accu-
racy) manner.

2.3 Embedded Hidden Markov Model (EHMM)

Hidden Markov Models track the time-varying stochastic
process through probability statistics, and have been widely
applied to acoustic speech signal processing (Rabiner 1989).
Samaria (1994) first constructed a one-dimensional HMM on
a face partitioned into five regions (hair, forehead, eye, nose,
and mouth), each region corresponding to a hidden state. The
intensities of each region are taken as the observation. Three
basic problems in HMM-based methods illustrate the back-
bone of this class of methods: (1) how can one efficiently
compute the probability P(O|λλλ) of the observation sequence
O = (o1, . . . , oT ) (T denotes the number of observations)
given the HMM model λλλ (model parameters); (2) how does
one choose a corresponding state sequence Q = (q1, . . . , qT )

that is optimal in some meaningful sense (e.g. maxIg
H ,Il

H
); and

(3) how can the model λλλ be adjusted to maximize the prob-
ability in problem (1) P(O|λλλ). These three problems can be

solved with the help of the backward-forward algorithm, the
Viterbi decoding algorithm, and the Baum-Welch algorithm,
respectively. A detailed discussion and analysis of these three
problems and HMM can be found in Rabiner (1989). Owing
to the fact that a face image contains two-dimensional spatial
information, conventional HMM is challenged by two prob-
lems: the loss of some spatial information and high computa-
tion cost. Later, the use of E-HMM (Nefian and Hayes 1999)
was proposed to model the face image at a moderate compu-
tation cost. Gao et al. (2008b,c), Xiao et al. (2009, 2010), and
Zhong et al. (2007) employed E-HMM to learn the nonlin-
ear relationship between sketches and their counterpart photo
images.

Before discussing these methods, the construction of the
E-HMM for a holistic face image should be introduced. In
this model, E-HMM consists of Ns = 5 super-states (cor-
responding to five different sections: forehead, eye, nose,
mouth, and chin) that model the face information in the
vertical direction. Each super-state can be decomposed into
embedded-states that describe the face information from
the horizontal direction. Each super-state and its embedded-
states can be regarded as a one dimensional HMM, where
each observation [each pixel has an observation (vector)] in
an image corresponding to one hidden state, i.e., embed-
ded state. The following parameters support the E-HMM
model: initial super-state distribution �s , super-state prob-
ability transition matrix As , initial embedded state distribu-
tion �

(k)
s , and embedded-state probability transition matrix

A(k)
e . In addition, the distribution b(k)

i (ot ) of each observa-
tion ot (t indexes the pixel) under the hidden embedded-
state sk

i (super-state and embedded-state are indexed by k
and i respectively) is represented by a Gaussian mixture den-
sity function parameterized by mixture weights, mean vector,
and covariance. The observation vector of each pixel is the
concatenation of five vectors extracted from the image by
five operators: grayscale value-extracting operator, Gaussian
operator, Laplace operator, horizontal and vertical derivative
operator (see Fig. 5).

Gao et al. (2008b) and Zhong et al. (2007) generated
sketches from an input test photo by using E-HMM. Figure 6
shows the generation of the sketch-photo pairs from groups
of hidden variables. In comparison to the model defined by
(1), this method does not model the likelihood P(Iin|Iout )

and the prior P(Iout ) directly. Instead, the hidden variables
z = {z1, · · · , zN } are taken into account

I∗
out = argmax

Iout ,z
P(Iout , z|Iin)

= argmax
Iout ,z

P(Iout , z, Iin)

= argmax
Iout ,z

P(Iin, z)P(Iout |Iin, z)

= argmax
Iout ,z

P(Iin, z)P(Iout |z). (11)
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Fig. 5 E-HMM structure and parameters for face image

To obtain I∗
out , a coupled E-HMM modelλλλ is jointly trained to

maximize the likelihhood P(O|λλλ) by using the Baum–Welch
algorithm under the assumption that a sketch and the counter-
part photo share the same supper-state and embedded-state
transition probability matrix. Here the observation sequence
O is the concatenation of features extracted from one sketch-
photo pair (I P , IS) by the aforementioned five operators.
Afterward, two sub-E-HMM models λλλP and λλλS are obtained
by uncoupling the E-HMM model as λλλ = [λλλP ;λλλS]. In the
synthesis stage, K E-HMM models are selected with respect
to the similarity between the source input photo and the trian-
ing photos. The similarity is measured by P(Oin|λλλP ) calcu-
lated by the forward-backward algorithm, where Oin denotes
the observation sequence extracted from the input photo Iin

and λλλP is the E-HMM model of a training photo image.
With regard to each selected λλλPi (i = 1, · · · , K ), the proba-
bility P(Iin, z) under this model can be further represented as
P(Oin, z|λλλPi ). Gao et al. (2008b) solved the above Eq. (11) in
three steps. First, the optimal state sequence z is decoded from
the observation sequence Oin by λλλPi exploiting the Viterbi
algorithm

z∗ = argmax
z

P(Oin, z|λλλPi ). (12)

Then, the observation sequence Oout corresponding to the
target sketch is then reconstructed according to the computed
optimal state sequence z∗ under the E-HMM λλλSi

O∗
out = argmax

Oout

P(Oout |z∗,λλλSi ) (13)

Fig. 6 Graphical illustration of the model in (Gao et al. 2008b; Zhong
et al. 2007). Here x1, . . . , xT and y1, . . . , yT denote the observations
extracted from a sketch-photo pair respectively, i.e. oi = [xi ; yi ], i =
1, . . . , T . z1, . . . , zN are hidden variables

The above optimization problem can be resolved by assign-
ing the mode of a special Gaussian component of the
Gaussian mixture model, where the index of the spe-
cial component is determined by the corresponding state
value in the optimal state sequence z∗. Subsequently a
sketch can be rearranged from grayscale values extracted
from the observation sequence O∗

out . Finally, the target
sketch is synthesized by a linear combination of these K
sketches weighted by the sum-normalized similarity mea-
sure P(Oin|λλλP ).
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Since the method in Gao et al. (2008b) and Zhong et al.
(2007) was conducted on a holistic face image, certain fine
local features such as those associated with eyes, nose, and
mouth, could not be learned. Furthermore, some noise exists
in the synthesized sketches. To overcome these defects,
Gao et al. (2008c) extended the aforementioned method to
local patch-based sketch synthesis in a subsequent work.
Here, all the images were divided into even patches with
some overlap. For each patch in the source input image,
the corresponding target image patch is synthesized using
the approach introduced above (Gao et al. 2008b; Zhong
et al. 2007). The approach in Xiao et al. (2009) extended
the algorithm (Gao et al. 2008c) to face photo synthesis,
employing a similar idea to Gao et al. (2008c). Several
of the above E-HMM-based methods average the overlap-
ping regions which may result in blurring effect. In con-
sideration of this, the image quilting technique (Efros and
Freeman 2001) was exploited to stitch the neighbor patches
both for sketch synthesis and photo synthesis in Xiao et al.
(2010).

2.4 Discussion

Gradient-based prior for data modeling-based methods find
only neighbors related to pixels in the same location,
which may result in low compatibility between neighbor-
ing patches and sensitive to small misalignment of face
images. MRF-based methods compensate for this shortcom-
ing by defining two compatibility functions between the low-
resolution patch (or sketch/photo patch) and the correspond-
ing high-resolution patch ( photo/sketch patch), and among
high-resolution neighboring patches (photo/sketch patches),
respectively. However, MRF-based methods always adopt
the MAP criterion to select the most appropriate neighbor-
ing patch to hallucinate the target patch. This requires that
there are sufficient examples in the training dataset to con-
tain every possible patch state; otherwise the MAP strat-
egy may lead to deformation as a result of its neighbor
selection limitation. E-HMM-based methods enforce com-
patibility between neighboring states by a transition prob-
ability matrix from one state to other neighboring states.
From the analyses carried out in Sects. 2.1, 2.2, and 2.3, we
found that all three sub-category methods share the same
drawbacks of high computation cost and heavy memory
load. Gradient-based prior for data modeling-based meth-
ods are subject to this defect because of pixel-based fea-
ture extraction and computation. MRF-based methods may
avoid this curse by adopting the neighbor search strategy
in Wang and Tang (2009). E-HMM-based methods toler-
ate this shortcoming as a result of both the pixel-based fea-
ture extraction strategy and iterative Viterbi decoding esti-
mation.

3 The Subspace Learning Framework

Subspace learning refers to the technique of finding a sub-
space �m embedded in a high dimensional space �n(n > m).
Linear subspace learning [e.g. principal component analysis
(PCA), locality preserving projection (He 2005)] is mainly
achieved by a projection matrix U ∈ �n×m , which is learned
from training examples. The matrix U can always be calcu-
lated by solving a standard eigenvalue decomposition prob-
lem (Zhang et al. 2009) or generalized eigenvalue decompo-
sition problem (He 2005),

Aui = λi Bui (14)

where A and where B denote various meanings for differ-
ent subspace learning methods, ui is the eigenvector corre-
sponding to eigenvalue λi , and U is composed of columns of
ui . Given an input image or image feature f ∈ �n , we can
find its projection on subspace �m from f proc = UT f . In
addition to above vector- and matrix-based subspace learn-
ing, it could be similarly extended to multilinear analysis,
i.e. tensor analysis (Tao et al. 2007a,b). Nonlinear subspace
learning mainly refers to nonlinear manifold learning [e.g.
locally linear embedding (Roweis and Saul 2000)]. The con-
cept of constructing a local neighborhood has been explored
since the methods of such a sub-category have no explicit
mapping function. When the subspace-learning framework
is applied to FH, most methods assume that both sides of the
FH share the same linear combination of weights. An illus-
tration of the subspace-learning framework is shown in Fig.
7; for an the holistic method such as eigentransformation,
the partition mask denotes the identity map which preserves
the whole face image and K equals to the number of training
image pairs. The patch should be substituted by the holistic
face image.

3.1 Linear Subspace Learning-based Approaches

Tang and Wang (2002, 2003, 2004) and Wang and Tang
(2003, 2005) proposed an eigentransform method for face
sketch synthesis and FSR by exploiting PCA. This method
assumes that the sketch and corresponding photo share the
same linear combination coefficients (Tang and Wang 2002,
2004). The input photo pr is first projected on the photo train-
ing set P to obtain the linear combination coefficients cp

pr = Pcp =
M∑

i=1

cpi Pi . (15)

The target sketch sr is then synthesized by linearly com-
bining sketches S in the training set with aforementioned
coefficients cp
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Fig. 7 Diagram of the subspace learning framework

sr = Scp =
M∑

i=1

cpi Si . (16)

In Tang and Wang (2003), the shape was first separated from
the texture and then eigentransform was applied to shape and
texture. Finally, the shape and texture are fused to obtain the
sketch corresponding to the input photo. The idea of eigen-
transform was then applied to FSR (Wang and Tang 2003,
2005).

Considering the fact that less information is provided in
the sketch than in an original face image, which may affect
face recognition performance, Li et al. (2006) proposed an
algorithm for synthesizing a photo from its sketch coun-
terpart. In the proposed algorithm, they performed eigen-
analysis (Turk and Pentland 1991) on a hybrid space con-
sisting of training sketches and training photos instead of
on the photo space, as in the methods discussed previously.
By separating the hybrid projection matrix obtained from
the eigen-analysis into two coupled matrixes-an eigenphoto

matrix and an eigensketch matrix, the projective coefficients
are obtained by projecting the query sketch on the sketch
space spanned by the columns of the eigensketch matrix.
Finally, the pseudo-photo is synthesized from the linear com-
bination of eigenphotos weighted by the obtained coeffi-
cients.

Park and Lee proposed a method for FSR (Park and Lee
2003) that was similar to Tang and Wang’s work (Tang and
Wang 2003). The method is based on a face morphable model
under the framework of top-down learning (Hwang and Lee
2003; Jones et al. 1997). The shape and texture informa-
tion are first separated using backward warping and then
decomposed into a linear combination of shapes and tex-
tures collected from the low-resolution training images. The
reconstruction weight is found by solving a least square prob-
lem, after which the high-resolution image could be halluci-
nated by combining the estimated high-resolution shape with
the estimated high-resolution texture using forward warp-
ing. They extended this idea further to a two-step method
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by incorporating a recursive error back-projection procedure
(Park and Lee 2008).

In contrast to the method in Park and Lee (2008), which
utilized the prototype faces trained from the raw training
images rather than from the residual images themselves, Hsu
et al. (2009) presented a two-step method. In the method,
both high and low-resolution training images are divided into
subsets and then, for each input low-resolution image, the
closest training subset is selected by finding the index of the
nearest cluster under Euclidian distance metric.

Different from the aforementioned PCA-based methods
all performed on a whole face image, which may result
in some blurring effect and the loss of some critical fine
detail information, Liu et al. (2005c) proposed a patch-based
method that utilizes multilinear analysis techniques and a
coupled residue compensation strategy. An initial estimate
is obtained via tensorpatch super-resolution. By perform-
ing PCA on both low and high-resolution training images,
the final high-resolution image is reached by settling a
least square problem. The experimental results indicates that
the high-resolution face image generated by their proposed
method resulted in improvements, especially for some detail
parts, compared to other global methods.

In addition to PCA, locality preserving projection (LPP)
(He 2005) is explored to compute the projection weights.
Zhuang et al. (2007) proposed a two step FSR method:
locality preserving hallucination for the initial estimate and
neighbor reconstruction for residue compensation. LPP is
first utilized to extract the embedding features from train-
ing images and the low-resolution input image. Next, the
radial basis function (RBF) regression model is learned from
the training image features obtained and the training image
intensities, characterized by the regression coefficients. The
whole image is then output from the RBF regression model
after inputting the feature of the source input image. At the
residual compensation stage, neighbor embedding (Chang
and Xiong 2004) is explored to hallucinate the high fre-
quency information. Finally, the high-resolution image is
fused by adding the estimated holistic face image and the
high frequency information. Zhang et al. (2008) proposed
an adaptive learning method based on LPP. Given an input
low-resolution photo, they first interpolated it to obtain its
high-resolution counterpart and then filtered it using a low-
pass filter to generate the low frequency face image. A sim-
ilar process is also applied to the low-resolution training
images. The LPP procedure is used on the low-resolution
training images to obtain the basis and the mapped data
matrixes. Residual faces are then obtained from the high-
resolution faces by removing the corresponding low fre-
quency parts. By projecting the input low frequency image
patch on the basis matrix, the low dimensional feature is
obtained. Similar features are selected and utilized in the
obtained mapped data matrix under the metric of Euclidean

distance, and the high frequency residual image is halluci-
nated using an eigentransformation-like method from the
training residual images whose indexes are determined in
the feature selection step. The final high-resolution image is
synthesized by adding the low frequency face image to the
residual image.

3.2 Nonlinear Manifold Learning-based Approaches

Inspired by locally linear embedding (Roweis and Saul
2000), Chang and Xiong (2004) proposed a super-resolution
algorithm. This method assumes that the low-resolution face
images and their corresponding high-resolution counterparts
are sampled from two manifolds share a similar geometrical
structure. The proposed method works at patch-level and all
referred images are divided into patches at the outset. Given
an input low-resolution image patch y, K nearest neighbors
yi (i = 1, . . . , K ) are first found in the patches extracted from
low-resolution training images. The reconstruction weight
vector w is calculated by solving a least squares problem

min
w

‖ y −
K∑

i=1

wi yi ‖
2

, s.t.
K∑

i=1

wi = 1. (17)

By linearly combining high frequency information xi of
the K high-resolution image patches corresponding to the
selected K low-resolution candidates,

∑K
i=1 wi xi , the target

high-resolution image patch is generated by adding the cor-
responding low frequency information transferred from the
low-resolution input image. All the obtained image patches
are put together to obtain the final target.

Aware that global FH methods might lose critical fine
detail information, the local neighborhood construction idea
of LLE was subsequently explored in FH methods. Liu et al.
(2005a) applied a similar idea to that in Chang and Xiong
(2004) to face sketch synthesis, taking the image intensities
as the input and the output directly rather than the high fre-
quency feature. Their experimental results showed that this
nonlinear method achieved improvements over the global lin-
ear method like Tang and Wang (2002, 2003, 2004). Liu et
al. (2005d) utilized the neighbor embedding method to gen-
erate an initial high-resolution image from its low-resolution
counterpart and then explored generalized singular value
decomposition to hallucinate the high frequency informa-
tion to compensate the residual for the initial estimate. They
applied singular value decomposition to obtain two projec-
tion matrixes and then, given an input low-resolution image
patch, synthesized the initial estimate by addressing a least
square problem, thereby exploring their previous work (Liu
et al. 2005b). The residual image is generated using a similar
procedure. (Fan and Yeung 2007) proposed a two-step image
hallucination method using neighbor embedding over visual
primitive features. In the first stage, neighbor embedding is

123



Int J Comput Vis

also used to obtain an initial estimate. In the second stage, the
residual error is compensated for by averaging the residual
error of K nearest neighbors that are stored in the training
phase. Chen et al. (2009) applied neighbor embedding to
visible image-near infrared image synthesis with LBP fea-
tures as the input. Through their face recognition experimen-
tal results, great improvements were made for illumination
variation cases.

Though patch-based methods improved the detail, a global
search strategy among all training image patches is time-
consuming. Ma et al. (2009, 2010a,b) proposed a position-
based FH method that borrowed the idea of neighbor embed-
ding. After dividing all images into patches, the high-
resolution counterpart of a given input low-resolution image
patch is estimated by applying neighbor embedding to those
training image patches located in the same position as the
test patch. The authors also applied the position-based FH
method to multi-view FH in which a multi-view face synthe-
sis procedure was conducted before hallucination by utilizing
a method similar to neighbor embedding (Ma et al. 2010a).
They further investigated whether residue compensation was
a necessary step for FH and declared that it was not indis-
pensable if the FH algorithm did not incorporate dimension
reduction methods such as PCA, or LPP which incur the loss
of non-feature information (Ma et al. 2010b). Liang et al.
(2010) also utilized a method similar to neighbor embed-
ding to compensate for the initial high-resolution estimate
obtained from an image decomposition perspective.

To further improve the quality of local detail, pixel-
structure is explored to refine the local characteristics. Also
inspired by LLE, Hu et al. (2010, 2011) proposed a method
from local pixel structure to global image FSR. This method
assumes that two face images belonging to the same person
should have similar local pixel structures and that each pixel
could be generated by a linear combination of its neighbor-
hoods weighted by coefficients. They conducted their method
in three steps as follows: (1) K example faces are searched
from the low-resolution image training set containing images
that are most similar to the input and K corresponding high-
resolution example images are warped to the input face using
optical flow (Brox et al. 2004); (2) the local pixel structures
for the target high-resolution face image are learned from
the warped high-resolution example faces; and (3) the tar-
get high-resolution face image is estimated by addressing a
constrained least square problem by means of an iterative
procedure. When the peak signal to noise ratio (PSNR) and
structured similarity index metric (SSIM) (Wang and Bovik
2004) values were compared to other methods, the proposed
method was found to be superior.

Li et al. (2009) claimed that the assumption adopted by
many learning-based super-resolution methods that the low-
resolution representation manifold and the corresponding
high-resolution representation manifold share similar local

geometry might not hold due to the non-isometric one-to-
multiple mappings from low-resolution image patches to
high-resolution image patches. They proposed a manifold
alignment method for FH that projected the two manifolds to
a common hidden manifold. An input low-resolution image
is first projected onto the common manifold and the FH task
is then conducted among the common manifold and the high-
resolution manifold by way of the neighbor embedding.

3.3 Discussion

PCA-based FH methods preserve the holistic property but
ignore the neighboring relations for encoding some local
facial features. Manifold learning-based FH methods make
up for this imperfection by enforcing certain constraints:
for example, LLE assumes that each patch of a face can be
reconstructed by a linear combination of its nearest neigh-
bors and this relation is preserved for both low-resolution
image (photo) and high-resolution image (sketch); LPP is a
linear approximation of a Laplacian eigenmap (Belkin and
Niyogi 2001), which preserves the local geometry by con-
structing a graph of neighboring nodes connected by edges.
Then LPP-based FH methods also take local facial features
into account when they are applied to model the hallucination
process. Though the local neighboring relations of manifold
learning-based methods may be well preserved, the global
shape information of a face might be not easily modeled by
these methods.

4 Combination of Bayesian Inference and Subspace
Learning Framework

Some works have explored both Bayesian inference (Sect.
2) and subspace learning methods (Sect. 3). Methods in this
category have mostly applied subspace analysis (Fig. 6) to the
prior model (Fig. 3) or explored subspace learning methods
to generate an initial estimate, in which case the two step
framework (Liu et al. 2001, 2007a) is adopted.

Although the method (Liu et al. 2001, 2007a) is intro-
duced in Sect. 2.2 (under the Bayesian inference framework)
for the convenience of introduction, indeed, it can be deemed
as a representative approach in the contexts of Bayesian infer-
ence and subspace learning. In this approach (Liu et al. 2001,
2007a), principal component analysis is first applied to obtain
an initial global face image and subsequently an MAP-MRF
is exploited to calculate the local face image.

Liu et al. (2007b) applied a two-step procedure to photo
synthesis from an input sketch. In the first step, a method
similar to Liu et al. (2005a) (LLE-based) is used to generate
an initial estimate. Then, by exploiting the proposed tensor
model whose modes consisted of people identity, patch posi-
tion, patch style (sketch or photo) and patch features, the high
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frequency residual error is inferred under the Bayesian MAP
framework on the assumption that a sketch-photo patch pair
shares the same tensor representation parameter. By adding
these two parts, a photo with much more detailed information
could be synthesized from the input sketch.

Zhang and Cham (2008, 2011) proposed a FSR approach
in the DCT domain under the MAP framework. In this
method, the high frequency DCT coefficients are abandoned
due to their weak energy. The DC coefficient is calculated
by an interpolation-based method, while the AC coefficients
are estimated by their corresponding K nearest neighbors
exploring the idea of LLE under a simplified MRF model that
assumes there were no dependency relations between neigh-
boring AC coefficients. Prefiltering procedures are executed
along the boundaries block-wise locally before performing
DCT and postfiltering procedures are carried out after apply-
ing IDCT.

Unlike many LLE-based methods that assumed the low-
resolution patch and high-resolution patch had the same
reconstruction weights or coefficients, Park and Savvides
(2007) proposed a LPP-based FSR, which inferred the LPP
projection coefficients of each high-resolution patch via
Bayesian MAP criterion from an input low-resolution image
patch. Together with the LPP projection matrix learned from
the training of high-resolution image patches, the high-
resolution image patch can be synthesized from their lin-
ear combination; hence, a final high-resolution image can be
fused from the patches obtained.

Following Park and Savvides’s procedure for projection
coefficients (Park and Savvides 2007), several similar meth-
ods are proposed. Kumar and Aravind (2008b) proposed a
two-step method using orthogonal locality preserving pro-
jections (OLPP) (Cai et al. 2006) and kernel ridge regression
(KRR). OLPP is utilized to estimate the coefficients of each
high-resolution image patch, as in Park and Savvides (2007),
while KRR is used to estimate the high frequency needed
to compensate for the residual error. Kumar and Aravind
(2008a) also proposed a similar idea that combined 2D-PCA
(Zhang and Zhou 2005) and KRR to hallucinate input low-
resolution images, in which 2D-PCA was explored to esti-
mate the 2D-PCA projection features (coefficients) of the
high-resolution image and KRR was applied to estimate the
residue. Subsequently, Cai et al. (2006) substituted OLPP
into the direct LPPs method (Ahmed et al. 2008) to estimate
the projection coefficients while using KRR to compensate
for the residual image.

Several works investigate the learning procedure applied
in multi-frame or video sequence FSR. Capel and Zisser-
man (2001) proposed a FSR method that could work either
by constraining the solution to a restricted subspace or by
defining a prior via subspace analysis where both subspaces
were spanned by PCA components. An image is divided into
four regions: the eyes (a pair), nose, mouth, and cheek (two

sides) areas and some PCA components are trained separately
from the corresponding training image regions. A maximum
likelihood (ML) estimator is obtained by restricting the solu-
tion lying on the PCA subspace and a MAP estimator is
produced by extending this ML estimator through adding
a prior defined on the coefficients of the principal compo-
nents. Another MAP estimator is formed by encouraging
the estimated image to lie near to the PCA subspace as a
prior. Similar work was also carried out by Chakrabarti et
al. (2007) who proposed a multi-frame face image super-
resolution method via kernel PCA and took the prior in the
form of a Gibbs function. The energy function reflects the
energy of the high-resolution image outside the principal
subspace that could be written in a least square distance
of high-resolution image from its projection on the princi-
pal subspace. The high-resolution image is computed using
the gradient-descent approach by solving a constrained least
squares problem.

Considering the fact that one application of face image
super-resolution is face recognition and that dimensionality
reduction is frequently used in state-of-the-art face recogni-
tion systems, Gunturk et al. (2003) proposed an eigenface-
domain super-resolution method especially for face recogni-
tion using a sequence of images extracted from surveillance
videos. FSR is usually seen as a preprocessing procedure for
generic FSR-based recognition systems; however, in their
proposed method, they first extracted feature vectors from
sequential low-resolution images by PCA and then estimated
the feature vector of the corresponding high-resolution image
by exploring eigenface analysis under the MAP framework.
The feature vector could then be used both for face recogni-
tion and high-resolution image reconstruction. After multi-
plying the feature vectors by the PCA projection matrix cal-
culated from the high-resolution training images, the super
resolved face image is obtained. This method has the advan-
tage of a reduction in computational complexity but suffers
from poor visual quality.

Most of the above methods are dedicated to frontal FSR or
frontal FSPS, although some insight into the pose and view
variation issue has been provided. Li and Lin (2004) proposed
a FSR method with pose variation in which they first utilized
a SVM classifier to estimate the pose label of the input low-
resolution face image. The frontal low-resolution face image
is then estimated by solving a least square problem based on
the corresponding training images with the same pose label.
Using the estimated frontal face image, they applied the hal-
lucination method in Gunturk et al. (2003) to hallucinate the
high-resolution image. Following a similar idea to Gunturk
et al.’s method (Gunturk et al. 2003), Jia and Gong (2005)
proposed a multi-view, multi-illumination tensor face-based
FSR approach. The tensor is composed of four modes: iden-
tities, views, illuminations, and pixels. This method derives
a model for the reconstruction of identity parameter vectors
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in the high-resolution tensor space from the corresponding
identity parameter vectors of low-resolution space. By substi-
tuting the PCA in Gunturk et al. (2003) with tensor analysis
under the maximum likelihood estimation framework, the
identity parameter is calculated and both face recognition
and FSR are carried out. The tensor model was subsequently
extended to the multi-resolution patch tensor for face expres-
sion hallucination under the MAP framework (Jia and Gong
2006, 2008). This method could hallucinate several high-
resolution images with different expressions given a low-
resolution image. The tensor consists of modes of identities,
expressions, resolutions, patches (patch location), and pix-
els. An image is decomposed into two parts: the low and
middle frequency information part, and the high frequency
information part, which results in the MAP objective func-
tion being solved by a two-step sequential solution. In the
first step, the low and middle frequency information is eval-
uated by solving a least square problem. The high frequency
information is then compensated by exploiting a nonpara-
metric patch learning process in the second step. Combining
these two parts, the target high-resolution image with some
expression is computed.

5 The Sparse Representation-based Approaches

Sparse representation accounts for a decomposition that rep-
resents a signal ysig ∈ �n into a linear combination of
basis signals Di ∈ �n(i = 1, · · · , k), which are often
called atoms, weighted by few nonzero coefficients. Given
that D = [D1, · · · , Dk] denotes an over-complete dictionary
(k > n), the sparse representation of the signal ysig is repre-
sented as follows:

argmin
xcoe

‖ysig − Dxcoe‖2 + λ‖xcoe‖0 (18)

However, solving this “L0-norm” (which is actually not a
norm since it does not satisfy the three necessary conditions
of the definition of norm) regularized problem is NP-hard and
is computationally prohibitive. Nevertheless, Donoho (2006)
recently proved that the minimal L1-norm solution approxi-
mates the sparsest solution under mild conditions. Thus, the
optimization problem in Eq. (18) is reformulated:

argmin
xcoe

‖ysig − Dxcoe‖2 + λ‖xcoe‖1 (19)

which is known in statistical literature as the Lasso, essen-
tially a linear regression regularized with L1-norm on the
coefficients (Tibshirani 1996). In some applications, such
as image denoising (Elad and Aharon 2006) and image
restoration (Mairal et al. 2008a), the dictionary is always
learned from training examples by alternatively optimizing
D and xcoe respectively, while in applications such as face

recognition (Wright et al. 2009), D is predefined as a set of
either patches or features extracted from images.

Yang et al. (2008a) proposed a two-step method for FSR
based on sparse coding. In the first step, non-negative matrix
factorization (Lee and Seung 1999) is used to obtain a non-
negative basis matrix B which spans a face subspace. An
MAP problem is defined to reconstruct an initial estimiation
to the target high-resolution image

max
IH

P(IL |IH )P(IH ) ⇔
c∗ = argmin

c
‖ MBc − IL ‖2

2 + λ‖ �Bc ‖2, s.t.c 	 0,

(20)

where M is a blurring and dow-sampling matrix, c is the
non-negative reconstruction coefficient vector, λ is a trade-
off factor between the reconstruction term and the prior term,
and � is a high-pass filtering matrix. Finally the initial high-
resolution image is generated by Bc∗. Since the regulariza-
tion in Eq. (20) requires the result to be smooth, some critical
high-frequency information can be filtered.

In the second step of this method, sparse representation
on both low-resolution image patches (features) and high-
resolution image patches (features) is applied to obtain the
residual image to compensate the missing detailed informa-
tion. Before performing sparse representation, two dictio-
naries DL and DH are constructed from some patch pairs
randomly sampled from the training images (both low-
resolution and hihg-resolution images). The target high-
frequency information is computed by Dhααα, where the coef-
ficient vector ααα is given by

min
ααα

‖ ααα ‖1 + η

2
‖ D̃ααα − ỹ ‖2

2 (21)

where D̃ =
[

FDL

βEDH

]
and ỹ =

[
Fy
βωωω

]
. The parameter η

controls the tradeoff between the sparsity of the coefficient
and the fidelity of the data term and β balances the low-
resolution reconstruction and the compatibility among neigh-
boring patches. F extracts the gradients of patches. E extracts
the overlapped region between the current target patch and
the neighboring reconstructed patch. ωωω consists of the inten-
sities of a neighboring patch on the overlapped region. y is the
input low-resolution image patch. Finally the target output
high-resolution image is obtained by superimposing Dhααα on
Bc∗.

A similar sparse representation model is borrowed in
several other works. In Chang et al. (2010), Yang’s model
(2008a) was applied to face sketch-photo synthesis by sub-
stituting the low- and high-resolution images with sketches
and photos. Considering that different areas of the face might
have their own characteristics, Wang et al. (2011) proposed
a multi-dictionary based sparse representation framework in

123



Int J Comput Vis

which a sub-dictionary was learned from a cluster of train-
ing image patches. A simple version of this model was also
borrowed to perform FSR and FSPS with the dictionary pre-
defined as a collection of image patches (Ji et al. 2011; Jung
et al. 2011). Now that the number of nearest neighbors is
fixed in most existing methods, which might introduce some
deformation and noise into the result, Gao et al. (2012) and
Wang et al. (2013a) utilized sparse representation to con-
duct feature selection for FSPS and heterogeneous image
transformation respectively. The principal motivation is to
adaptively select closely related features whose sparse rep-
resentation coefficient is larger than a threshold value. By
substituting the L0-norm or L1-norm regularized prior term
in Eq. (18) or (19) with another regression regularized prior
such as ridge regression prior (Komarek 2004) and relevance
vector machine prior (Tipping 1991) (which belongs to the
sparse Bayesian approaches), Chang et al. (2011) proposed
a multivariate output regression-based FSPS method. Zhang
et al. (2011a) proposed a support vector regression-based
two-step method for a FSPS method.

Different from above methods all assumed that the source
input and the target output had the same sparse representa-
tions, Wang et al. (2012) relaxed this assumption suppos-
ing they had their respective sparse representations. These
two sparse representations are connected through a linear
transformation. Then the objective function is composed of
two sparse representation parts, one fidelity term between
the sparse representation coefficients, and the regularization
term on the linear transformation matrix, under some scale
constraints to each atom of dictionaries. They separated the
objective function into three sub-problems: sparse coding
for training samples, dictionary updating and linear trans-
formation matrix updating. Experimental results seem to be
over-smoothed.

6 Performance Evaluations

The evaluation for FH can be subjective quality assessment
or objective quality assessment. Subjective quality assess-
ment can be applied by visual perception or mean opinion
score (MOS), which has been used in ITU-T p.910, a stan-
dard in multimedia services. Visual perception is predicated
on the observers’ perception without a numerical quantifica-
tion. MOS is defined as the average of the quality values rang-
ing from 1 to 5 that are obtained from observers. Although
the subjective image quality assessment is the most direct
and most accurate metric to reflect a person’s perception, it
is always subject to the defects of costs and expensive man-
power. As a result, objective quality assessment metrics that
operate in an automatic manner have been proposed. These
include classical PSNR, mean square error (MSE) or root
mean square error (RMSE), cross-correlation, the recently

proposed SSIM (Wang and Bovik 2004), and the universal
image quality index (UIQI) (Wang and Bovik 2002) (a spe-
cial case of SSIM) method for generic image quality assess-
ment. To some extent, face recognition rate can also be seen
as an objective image quality assessment metric because it
measures the similarity of the query image to images in the
gallery. Table 2 summarizes and compares the evaluation
metrics of a number of representative methods.

Although FSR is important for improving the perfor-
mance of face recognition, there are limited results to explain
how FSR quantitatively affecting the face recognition perfor-
mance. Gunturk et al. (2003) performed eigenface (Turk and
Pentland 1991) recognition experiments on some real video
sequences containing 68 people, collected from the CMU
PIE database (Sim et al. 2002). They achieved an accuracy
of 44 % by utilizing low-resolution images in comparison
to 74 % by exploring their hallucinated high-resolution face
images. Park and Lee (2008) performed eigenface (Turk and
Pentland 1991) recognition experiments on three databases:
MPI (Vetter and Troje 1997), XM2VTS (Messer et al. 1999),
and KF (Roh and Lee 2007). Their results show that recogni-
tion performance can be significantly improved by utilizing
their hallucinated high-resolution face images compared with
exploiting the interpolated high-resolution images. Wang and
Tang (2005) conducted direct correlation-based face recog-
nition on 490 face images of 295 subjects in the XM2VTS
database (each subject has two images from two different
sessions). They found that the recognition accuracies fluc-
tuate slightly when the down-sample factor is not too large
(not larger than five in the paper). When the down-sample
factor is reduced further, the hallucinated high-resolution
face images improve the face recognition performance com-
pared to directly utilizing the low-resolution images. They
also pointed out that the improvement on face recognition
accuracy is not as significant as that in the visual quality.
Further studies in psychology and human visual system are
valuable to examine how FSR help improve face recognition
and verification performance.

Most existing FSPS methods perform synthesis and recog-
nition experiments on the public database: CUFS (Wang
and Tang 2009). This database contains 606 face sketch-
photo pairs consisting of three sub-databases: CUHK Stu-
dent (188 pairs), Purdue AR (123 pairs), XM2VTS (295
pairs). Face photos of this database are generally in neu-
tral expression, normal lighting, and frontal view. In exper-
iments, 306 pairs are usually utilized for model training
and the remaining 300 pairs are for model test. Tang and
Wang (2003) reported an accuracy of 81.3 % by exploring
a Bayesian classifier (Moghaddam et al. 2000) in compari-
son to 25 % by applying eigenface (Turk and Pentland 1991)
method on sketches without any synthesis process. Subse-
quently Liu et al. (2005a) improved the accuracy to 88 % by
adopting the kernel based nonlinear discriminant analysis
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(Mika et al. 1999) as the dimension reduction algorithm.
Wang and Tang (2009) then achieved an accuracy of 96.3 %
classified by random sampling linear discriminant analysis
(Wang and Tang 2006). Considering the sketches of above
database are in a relative simple structure, the multimedia
lab of Chinese University of Hong Kong further released
the Face sketch FERET database (CUFSF) (Zhang et al.
2011c), which includes 1,194 persons in the FERET data-
base (Phillips et al. 2000). Each person in the CUFSF data-
base has a photo with lighting variation and a sketch with
shape exaggeration drawn by the artist.

7 Promising Future Directions and Tasks

In Sect. 6, we saw that when each method is evaluated by
visual perception in a subjective image quality assessment
manner, it is expensive and may easily become tedious. Thus,
an automatic objective image quality assessment metric is
essential in evaluating the performance of the FH algorithm.
Classical full reference metrics such as PSNR, MSE, and
RMSE are holistic and cannot yet reflect the detailed infor-
mation that is needed to assess image quality. This point
is discussed in detail by Wang and Bovik (2009). There-
fore, an effective, objective image quality assessment met-
ric that has much better correlation with subjective visual
perception needs to be developed. Several metrics such as
UIQI, SSIM, VIF (Sheikh and Bovik 2006), and FSIM
(Zhang et al. 2011b) have been proposed; however, none
of them is specialized for hallucinated face images, which
have their own unique characteristics due to both the struc-
ture of the face and the property of the hallucinated image.
Hence, synthesized face image quality assessment may be a
promising and helpful research direction.

Recently, sparse representation has achieved great
progress in computer vision (Wright et al. 2010) and data
analysis (Zhou and Tao 2013). In particular, methods have
been proposed for image reconstruction and state-of-the-art
results have been obtained (Mairal et al. 2008a,b). Yang
et al. (2008b) applied the idea of the sparse representation
model with a coupled learning process to face image super-
resolution and achieved good results. Yang et al.’s method
(2008b) is not the end of the application of sparse represen-
tation to FH, since the method considers less prior knowledge
of the face image than the face images provide, and the effec-
tive exploration of the sparsity of face images is therefore an
interesting problem to resolve.

From Table 2, we find that most image databases used
for face image super-resolution were not sampled from sur-
veillance camera videos, since the main application of face
image super-resolution is face recognition or face retrieval
from a monitor. Therefore, an image database extracted from
surveillance videos should be constructed that incorporates

pose, illumination, expression, and view variant images.
Although the CUFS database has been constructed, there is
only one sketch with neutral expression and front view corre-
sponding to each photo in the database for face sketch-photo
synthesis; therefore, constructing a database containing sev-
eral sketches corresponding to each photo across multiple
modalities is essential. Furthermore, these two databases will
stimulate the progress of study on multi-modality FH and
recognition.

Though FSR and FSPS share a similar mathematical form,
they are intrinsically different. The first difference comes
from how much the face alignment precision affects the hal-
lucination. Face alignment is a critical preprocessing phase
before FH, because imprecise localization of the facial fea-
tures (landmarks) degrades the subsequent processes. Exper-
iments (Liu et al. 2007a; Jia and Gong 2008; Luo et al. 2012)
indicate accurate face alignment is more important for FSR
than for FSPS. Because face sketches and corresponding
photo counterparts are generally in high or moderate resolu-
tion, their alignment is relatively easier. Even a small amount
of misalignment can dramatically degenerate the FSR perfor-
mance. Low-resolution images usually have blurring effect
and contain limited structure information, and so many ambi-
guities exist for facial landmark localization which raises the
alignment of low-resolution face images a challenging prob-
lem. Another difference lies in whether they need to handle
the problem of shape exaggeration. Artists usually exagger-
ate some distinctive facial features when they draw sketches,
which results in some deformation. Wang and Tang (2009)
explained that “if a face has a big nose in a photo, the nose
drawn in the sketch will be even bigger”. Consequently, in
contrast to FSR, FSPS needs to handle the problem of shape
exaggeration.

From above analysis, precisely detecting facial landmarks
on low-resolution images to perform face alignment is still
a challenging problem. Moreover, the shape exaggeration
causes nonlinear transformation between sketches and pho-
tos. Existing FSPS approaches rarely consider the nonlin-
ear mapping resulted by shape exaggeration. Although Tang
and Wang (2003) considered the global shape information
in their work, the mapping relationship between sketches
and photos were assumed to be linear. Thus, effective face
alignment on low-resolution images and appropriately mod-
eling the nonlinear relationship between sketches and photos
resulted by shape exaggeration are two promising research
directions.

Besides learning-based face sketch synthesis methods sur-
veyed in this paper, some sketch synthesis algorithms are
not learning-based (Kang et al. 2005; Wen et al. 2006).
Whatever these methods are, they are applicable to general
images. However, they can hardly handle the styles by dif-
ferent artists. This is because different artists may have dif-
ferent representation and exaggeration styles for many parts
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Table 2 Evaluation Summary and Comparison of Different FH Methods

Method Database Category Subjective metric Objective metric

Baker and Kanade (2000a,b, 2002) FERET (Philips et al.
1997)

BI(GP) VP RMSE

Su et al. (2005) FERET, AR (Martinez
and Benavente 1998),
Cohn Kanade (Kanade
et al. 2000), PIE (Sim
et al. 2002)

BI(GP) VP N/A

Wang and Tang (2009) CUFS (Wang and Tang
2009)

BI(MRF) VP FR

Liu et al. (2001) FERET, AR BI(MRF) VP N/A

Gao et al. (2008b,c) (Gao et al. 2008b,c) BI(E-HMM) VP UIQI, FR

Park and Lee (2008) KF (Roh and Lee 2007),
XM2VTS (Messer et
al. 1999), MPI (Vetter
and Troje 1997)

SL(LSL) VP SSIM, FR

Wang and Tang (2005) CUFS Student (Wang
and Tang 2003)

SL(LSL) VP RMSE, FR

Liu et al. (2005c) FERET SL(LSL) VP N/A

Ma et al. (2010b) CAS-PEAL (Gao et al.
2008a), FERET, CMU
(Rowley et al. 1998),
Stereo-pair (Fransens
et al. 2005)

SL(NML) VP PSNR

Zhuang et al. (2007) Asian Face (Dong and
Gu 2001)

SL(NML) VP PSNR

Hu et al. (2011) FERET, AR, GA
(Nefian 1997)

SL(NML) VP PSNR, SSIM

Liu et al. (2007b) CUFS C-BI-SL VP RMSE

Chakrabarti et al. (2007) FERET YALE
(Georghiades et al.
2001)

C-BI-SL VP SSIM, MSE

Zhang and Cham (2011) FERET C-BI-SL VP SSIM, MSE

Gunturk et al. (2003) YALE, CMU, AR, HRL
(Hallinan 1994)

C-BI-SL VP FR

Wang et al. (2011) CUFS Student (Tang
and Wang 2002),
VIPSL (Wang et al.
2011)

SR MOS, VP FR

Yang et al. (2008a) FRGC 1.0 (Philips et al.
2005)

SR VP N/A

Chang et al. (2010) CUFS Student SR VP N/A

of a face. For example, different artists may render the nose,
eye, mouth and other parts of a face differently. It may be
even more difficult to model these different artistic styles than
model the shape exaggeration. To learn these different styles,
some discriminative information among them may favor the
synthesis process since it can assist to choose a sketch part
(here face part can be a face patch or a holistic face) from
sketches of desired styles.

Patch-based methods have been widely applied to FH due
to their ability to represent the local facial features. However,
these methods neglect the global shape information describ-
ing the holistically geometric relationships between the indi-
vidual facial features. Especially in face sketch-synthesis,

state-of-the-art methods adopt the patch-based strategies
which actually loss some important information about global
shape exaggeration. Tang and Wang (2002, 2003, 2004) pro-
posed an eigentransform scheme to take the global shape
exaggeration into account. Nevertheless, local facial features
were lost and this strategy could hardly distinguish subtle
individual facial feature variations. Therefore, designing an
approach to integrate both the information of local neighbor-
hood and the configuration of global shape exaggeration is
important for face sketch synthesis.

As is shown in Liu et al. (2007b), Wang et al. (2011),
and Zhang et al. (2011a), most available methods for FSPS
averaged the overlapping regions, which may result in
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over-smoothing, and the residual image could therefore be
learned from the training images to compensate for the lost
high frequency information. However, residual images were
learned from the sketch-photo pairs rather than the training
synthesized images and corresponding truth images. Thus,
a two-step FSPS framework such as this needs be explored
further.

In recent years, many FH methods have been developed
and obtained promising performance for face recognition
under well-controlled conditions. In particular, FSPS can sig-
nificantly improve the face recognition accuracy comparing
with direct recognition using sketch under well-controlled
condition (Wang and Tang 2009). However, this does not
suggest that FH is a solved problem. The recognition perfor-
mance degenerates when encountering faces collected from
uncontrolled conditions such as faces with non-frontal views,
expression and lighting variations due to the intrinsic non-
rigidness of faces and extrinsic uncontrollable environment
conditions. Though some valuable results for FH have been
obtained to handle one or two types of the aforementioned
variations (Li and Lin 2004; Jia and Gong 2005, 2006, 2008;
Ma et al. 2010a; Zhang et al. 2010), so much effort is required
to face the real challenges when attempting to handle multiple
variations simultaneously in practice. Especially, designing
effective approaches for modeling these variations is essen-
tial to apply FH in various real-world tasks and is a focus of
the future research.

8 Conclusion

In this paper, we reviewed the topic of FH incorporating
face image super-resolution and face sketch-photo synthe-
sis. The methods utilized are classified into four categories
according to the framework under which they fall: Bayesian
inference framework, subspace learning framework, combi-
nation of Bayesian inference and subspace learning frame-
work, and sparse representation-based methods. Bayesian
inference framework-based approaches can be grouped into
three sub-categories: gradient-based gradient prior model-
based methods, MRF-based methods, and E-HMM-based
methods. Subspace learning-based algorithms are divided
into linear subspace learning-based methods and nonlinear
subspace learning-based methods. By means of a compre-
hensive analysis and comparison of these methods, we found
that Bayesian inference methods have the disadvantage of
high computation cost and heavy memory load, although
neighbor compatibility reduces the boundary noise (except
for the gradient-based prior for data modeling-based meth-
ods). We also found that subspace learning-based methods
make strict assumptions about the geometric structure of
two image spaces and low computation cost. The combina-
tion of these two frameworks may result in a more accurate

method (except for the LLE-based methods in this category).
Although different from subspace learning-based methods,
sparse representation-based methods also assume that two
image spaces share a similar geometric structure; however,
this assumption is constrained on two sparse spaces. This
relaxes the original, much more restrictive assumption to
some extent. Finally, we proposed several promising future
directions and tasks, and we believe this survey will help
readers to gain a thorough understanding of the FH research
landscape. Although face super-resolution and FSPS share
the similar framework, this does not mean that methods
which work well for FSR also work well on face sketch-photo
synthesis and vice versa. This indicates that applying face
super-resolution techniques directly to FSPS may not always
achieve good performance and vice versa. This may be due
to the fact that though down-sampling and blurring effect
are the mian factors of difference between low-resolution
and high-resolution images, they have the similar texture or
intensity expressions. However, sketches and photos are in
quite different texture expressions.
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