RRT-Rope

A deterministic shortening approach for fast near-optimal path planning in large-scale uncluttered 3D environments

Louis.Petit@USherbrooke.ca
Alexis.Lussier.Desbiens@USherbrooke.ca

IEEE SMC 2021, October 17-20
Motivation

3D path planning in large uncluttered environments

Mine mapping UAV

- Holonomic problem
- 3-ball homotopic environments

Popular shortening algorithms

- Node pruning [1]
 - X Loss of resolution

- Elastic strips [2]
 - X Convergence time (online control)

- Partial-shortcut [3]
 - X Irrelevant shortcuts
 - X Non-deterministic

RRT-Rope

- Challenge
 - Computation time

- Tunnel

Tunnel Challenge

Computation time

30-300m

3-100m

Algorithm

RRT-Rope

- ✔ Fast time for a feasible path
 - RRT-connect
 - Altered version without ϵ
- ✔ Uniform resolution and near-optimality
 - Intermediate nodes insertion
- ✔ Irrelevant shortcuts avoided (deterministic node selection)
 - Farthest nodes first
 - Straight line detection
- ✔ Equal or shorter path than state of the art in shorter computation time
Cost function

\[g_t = \frac{c(\tau)}{v} + t \]

Analysis

- **Step size sensitivity**

- **Cost function computation**

<table>
<thead>
<tr>
<th>Travel</th>
<th>Computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø</td>
<td>Ø</td>
</tr>
</tbody>
</table>

- Fast UAV → Bigger \(\delta \)
- Long path → Bigger \(\delta \)
- Flat curve → \(\delta \approx 0.8 m \)