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Cyber-physical systems (CPS) embed software into the physical world, which are often 

encountered in a great variety of applications, in particular medical monitoring, robotics, smart 

grids, intelligence manufacture, and unmanned systems. CPSs have been demonstrated resistant 

to modeling for the inherent complexities originated from the incorporation of cyber and physical 

components together with their interactions. The study introduces a general framework facilitating 

pure data-driven reverse engineering cyber-physical systems, which involves physical system 

identification as well as transition logic inference. It has been substantiated by abundant real-world 

examples varying from electrical and mechanical systems to applications in medicine. This present 

work sheds some light on the underlying mechanism of CPSs while making predictions of the 

trajectory of CPSs with the assistance of the proposed model. Such information has been proven 

decisive for performance evaluation of CPSs. Significantly, it has application potential on 

debugging in the implement and guiding the redesign to guarantee the demanding performance. 

 

The proposed Identification of HYbrid Dynamical Systems (IHYDE) Algorithm applied to a 

thermostat.  

We now introduce the key principle of IHYDE with a room temperature control system: one of 

the most ubiquitous and simplest hybrid dynamical systems composed of a heater and a thermostat. 

By switching the heater on or off at any given time, a thermostat could maintain y(t), the real 

temperature approximate to user’s satisfying temperature. The room temperature increases by a 

rate of 30a Celsius degree per hour (see Fig. 1A) once turning on the heater. Correspondingly, it 



drops at a rate of −ay(t) (a > 0) Celsius degree per hour once the heater is off, the parameter is 

relevant to room's insulation.  

 
FIG. 1. An illustrative toy example of a thermostat. (A) Hybrid dynamical system’s physical 

dynamic equations and switching logics. The present switching logic is to turn on the heater once 

the temperature is lower than 19 Celsius degrees, and off when it exceeds 21 degrees. Temperature 

y dissipates to the exterior at the rate of −ay(t) (a>0) Celsius degree per hour when the heater is 

off, parameter depends on the room insulation. And the temperature raises by the rate of 30a 

Celsius degree per hour when the heater is on. (B) Transition logics of the relay hysteresis based 

on the room temperature. (C) Time series temperature data of a simulation of the thermostat 

system. Red (resp. blue) line illustrates the situation when the heater is on (resp. off). (D)-(E) 

Divided temperature data when the heater is on (off) from the original time series. (Reproduced 

from the original paper) 

Suppose 20 Celsius degree is the expected temperature, and hysteresis prevents thermostats form 

rapid on-off switching, i.e., chattering. A practical transition logic (Fig. 1B) is setting the lower 

(resp. upper) limit, such as 19 (resp. 21) degrees, and turn on (resp. off) the heater once the 

temperature exceeds the boundary. IHYDE algorithm is designed to identify both thermostat 

subsystems together with the switching rules based on merely the recorded time series temperature 

data (see Fig. 1C). We would then elaborate on the core concept of IHYDE with this simple case. 



Inferring subsystems. To begin with, IHYDE identifies the corresponding thermostat subsystem 

responsible to the time series temperature data iteratively. Therein the subsystem 2 that explain the 

majority of the acquired data (when the heater is on) is revealed by the algorithm (Fig. 1C). After 

which the dynamics of subsystem 2 is discovered using this part of data (see Fig. 1D). Same 

procedure is also conducted on the rest of the time series temperature data (Fig. 1E). Since the 

subsystem 1’s dynamics (as the heater is off) shall be identified by the IHYDE using the remaining 

data. 

 

Inferring transition logics. The next and ultimate step is to recognize the switching rules of both 

the subsystems, i.e., the principles following which switch the states between on and off. For 

subsystem 2 and its corresponding data in Fig. 1D (when the heater is on), the status quo maintains 

as the temperature varies within slightly lower than 19 degrees and approaching 21 degrees. Here 

the upper limit switching point between on and off is set when y(t) = 21, according to the software.  

In the practical application the switching happens once y(t) ≥ 21 degrees. Likewise, the software 

learns that lower limit switching prerequisite between off and on is when y(t) ≤ 19 (as in Fig. 1E). 

In general, IHYDE verifies the dynamics of both subsystems and the switching logics from one 

subsystem to another automatically. Simple and isolated example as it is, IHYDE manage to 

acquire decent results while applied in more sophisticated scenarios with multiple subsystems, 

even with nonlinear dynamics and switching logics. More details refer to the original paper.  

While the approach has its superiorities, some unsolved questions remains nonetheless. For 

instance, a new theory is demanded in order to interpret when the datasets in hand are informative 

enough to identify every (real) hybrid dynamical systems respectively. As a focal point in system 

identification, identifiability excludes the existence of abundant systems that may generate same 

data. Different hybrid dynamical systems may produce identical data, as illustrated in the original 

paper, which cannot be discriminated simply by datasets. The second issue consists in revealed 

models’ linear parameterization. With regard to models with parameters entering nonlinearly, local 

minimizer could be acquired with gradient descent, yet it does not necessarily globally optimized. 

Lastly, the dictionary functions for certain systems depend on their fields. Relevant insight and 

domain knowledge help constructing dictionary function for hybrid dynamical system, thereby 

improving model accuracy while reducing computational cost. Canonical dictionary functions can 



be used to approximate the real dynamics once the critical domain knowledge is unclear or lacking, 

such as kernels, polynomials and Fourier series. A polynomial series successfully approximates a 

sinusoid as shown as an example. Despite all this, under such circumstances the very original real 

functions may be hard to obtain or lost. Hence, IHYDE reveals different dynamics depending on 

the selection of the canonical dictionary functions, while still detecting the of switching points. 

Notwithstanding, these identified dynamics still suffice predictions due to their approximation 

capability for the main dynamics of each subsystem. 

 

 


