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Abstract

Supply chain management represents one of the most important scientific streams of 

operations research. The supply of energy, materials, products, and services involves 

millions of transactions conducted among national and local business enterprises. 

To deliver efficient and effective support for supply chain design and management, 

structural analyses and predictive models of customer–supplier relationships are 

expected to clarify current enterprise business conditions and to help enterprises 

identify innovative business partners for future success. This article presents the 

outcomes of a recent structural investigation concerning a supply network in the 

central area of Japan. We investigated the effectiveness of statistical learning theory 

to express the individual differences of a supply chain of enterprises within a certain 

business community using social network analysis. In the experiments, we employ 

support vector machine to train a customer–supplier relationship model on one of the 

main communities extracted from a supply network in the central area of Japan. The 

prediction results reveal an F-value of approximately 70% when the model is built 

by using network-based features, and an F-value of approximately 77% when the 

model is built by using attribute-based features. When we build the model based on 

both, F-values are improved to approximately 82%. The results of this research can 

help to dispel the implicit design space concerning customer–supplier relationships, 
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which can be explored and refined from detailed topological information provided 

by network structures rather than from traditional and attribute-related enterprise 

profiles. We also investigate and discuss differences in the predictive accuracy of the 

model for different sizes of enterprises and types of business communities.

Keywords: Computer science, Social sciences, Applied sciences

1. Introduction

Customer–supplier relationships are conventionally modeled and analyzed based 

on a linear structure (Handfield and Nichols, 1999) or dyadic structure (Cox et 

al., 2001) in the field of supply chain management. As goods and materials are 

vertically delivered between enterprises, it appears to be straightforward to model 

supply chains through the extrapolation of linear perspectives on customer–supplier 

relationships. However, oversimplifying the linear concept of the supply chain 

poorly reflects the complex and cyclical structure of customer–supplier relationships, 

and the linear model is also inappropriate for managers and academics to use to 

analyze and design supply chain developments (Kim et al., 2011). Therefore, both 

managers and academics strive to develop management strategies to improve the 

supply chain and to lead enterprises not only towards stability and profitability, 

but also towards the adoption of sustainable and innovative business partners (Zhu 

and Sarkis, 2004, Bellamy et al., 2014). Recently, several studies have attempted to 

improve this linear structure by using the supply network as an alternative approach 

(Turnbull et al., 1996, Shrivastava, 1995), and growing interest in applications of 

social network analysis (SNA) to the supply chain has rendered it a preferable model 

to linear analysis (Autry and Griffis, 2008, Borgatti and Li, 2009, Carter et al., 

2007). Nevertheless, due to real supply network data, the development of the network 

concept and the validation of its availability in practice have not been explicitly 

considered. On the other hand, applications of SNA for business developments are 

needed by enterprises to provide efficient and effective support for the identification 

of latent business partners with respect to current business contexts and future 

business trends.

To address these limitations, we propose an SNA-based model for predicting 

customer–supplier relationships for a real supply network in Japan (see the Tokyo 

Shoko Research Limited website http://www.tsr-net.co.jp/en for more information 

on the data). Based on previous studies (Chou and Chang, 2008, Hu and Zhang, 

2008, Mori et al., 2012), this article also employs statistical learning theory and 

a support vector machine (SVM) (Vapnik, 1995) to predict customer–supplier 

relationships. In comparison with these studies, among which Mori et al. (2012)

designed and trained an SVM model using linear kernel accounting where the size of 

features was much greater than the size of training instances, several nonlinear kernel 
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tricks are examined and compared with respect to the predictive accuracy level, as 

we only design dozens of features. Since the kernel of the Gaussian radial basis 

function (RBF) can transform an original finite-dimensional space into an infinite-

dimensional space, the highest predictive accuracy can be obtained by using an RBF 

kernel with 𝜎 = 1.0, which can generate an insightful classifier hyperplane relative 

to other kernels in order to rationalize consumer–supplier relationship extraction. 

We then introduce the network centrality concept and develop the SVM model using 

network centralities (NCs). NCs are used to determine the importance and influence 

of each node in an embedded network structure, to identify a new alternative 

customer–supplier relationship (related enterprise attributes (EAs) are introduced as 

explanatory variables in Mori et al. (2012)’s study). When we introduce closeness 

and betweenness into the SVM model to predict consumer–supplier relationships, 

the predictive accuracy of our model, which combines EAs with NCs, is significantly 

improved by 5.63% (from 76.41% to 80.71%). On the other hand, we also find that 

network centralities can dramatically improve the predictive accuracy levels, when 

enterprises are separated and grouped using an optimal algorithm of community 

division. We employ a fast modularity maximization algorithm, the Newman method 

(Girvan and Newman, 2002, Clauset et al., 2004), to detect sub-communities in the 

main supply network community, and four sub-communities are detected from the 

original community. After introducing the NCs with EAs, the predictive accuracy of 

the original community is improved by 5.63%, and the predictive accuracy level of 

each sub-community are improved by 7.18%, 9.01%, 8.15% and 9.39%, respectively. 

Furthermore, we estimate the network centrality degree as the separating indicator 

in place of the capital or employee number, to separate different enterprises into two 

classes; namely large enterprises (LEs) and small & medium enterprises (SMEs). As 

the degree is defined as the number of edges through which a node connects to other 

nodes in the network, enterprises that sustain more relationships (with customers 

or suppliers) are more active and central in the supply network. Our experimental 

results show that the predictive accuracy of both LEs and SMEs can be dramatically 

improved by combining NCs with EAs. More especially, the results obtained for the 

SMEs when only using NCs alone are sufficiently accurate.

This article makes two contributions. It first applies a machine learning approach 

using EAs and NCs as inputs thus introducing a new methodological approach 

to the literature on supply chain design and management. We also found that 

applying a combination of these two types of features is effective for predicting 

customer–supplier relationships, demonstrating the effectiveness of our proposed 

methodology, which has not been reported so far. Second, we analyze the

effectiveness of our methodology when applied to LEs and SMEs. As considering 

EAs alone, prediction performance levels are high when LEs are customers and 

SMEs are suppliers. This is typically the case of supply chains. However, it is 

difficult to make reliable predictions for the other cases. In this article, we show 
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that integrating NCs with EAs facilitates the prediction of customer–supplier 

relationships as SME–LE and SME–SME. Our findings, we believe, can contribute 

to the design of supply chains and can provide insight on ways of further developing 

business partner recommendation systems via machine learning.

The remainder of the article is organized as follows. We present a review of related 

literature on previous studies of SNA applied to supply networks in Section 2. In 

this section, we also discuss recent research topics on business data mining. The 

methodology employed in this article is explained in Section 3. Section 4 presents 

the experiments and a discussion, and Section 5 provides conclusions and a summary 

of the results.

2. Background

2.1. Empirical approaches to SNA applied to supply chains

From a network perspective, supply chains do not represent a focal enterprise’s 

direct link to each of its business partners (e.g., suppliers and customers) but 

its indirect or circular links to invisible enterprises that are associated with its 

business partners. This view of the supply chain is relatively new to business 

management theory and its effectiveness has been proven through both anecdotal 

and theoretical evidence (e.g., Japanese manufacturers and assemblers) (Cox et al., 

2001, Kajikawa et al., 2010). Research on supply networks has revealed the proactive 

and collaborative facets of supply network management (Bellamy et al., 2014).

In this supply network structure, the relative positioning of each enterprise with 

respect to others depends on the extent to which an enterprise affects both strategies 

and behaviors. In this context, the supply network is crucial for analyzing each 

enterprise’s role and importance based on its embedded position in the broader 

relationship structure (Kim et al., 2011).

Currently, SNA has increasingly gained acceptance by both scholars and

managers for its potential merits in integrating the operations and supply

management fields. According to Cox et al. (2001), SNA is a collaborative and 

developmental approach to the integration of supply chain management that can 

reduce transactional path length and that is more focused on the eradication of 

waste and supply chain inefficiency. The SNA concept is also particularly suited 

to studying how customer–supplier relationships in a supply network account 

for competitive advantages through the management of materials movement and 

information diffusion (Borgatti and Li, 2009).

Until recently, SNA has not been explicitly applied in an empirical study of 

real supply networks, and there is a general paucity of SNA applications in supply 
liyon.2016.e00123

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00123
http://creativecommons.org/licenses/by/4.0/


Article No~e00123

5 http://dx.doi.org/10.1016/j.he

2405-8440/© 2016 The Authors. Pub
management with only a few exceptions of a small corpus (Kim et al., 2011). In 

particular, no existing works apply major network centralities within a machine 

learning approach, which can offer practical applications and quantitative analyses 

of supply networks when identifying potential business partners. Therefore, in this 

article, we replace the traditional linear supply chain with an alternative supply 

network at the node- and network-levels, and we introduce machine learning 

techniques to illustrate the specific roles played by network centralities in a supply 

network.

2.2. Recent research on business data mining

Business plan development and strategy principles are perdurable research 

subjects in the fields of economics, finance, and management. Predictions based 

on data mining and machine learning technologies have been a primary focus of 

these fields for over half a century. Artificial neural networks (ANNs) are some of the 

most widely used models for predicting stock prices, bankruptcy trends, etc., in these 

fields (Atiya, 2001, Enke and Thawornwong, 2005). In addressing such real-world 

problems, probabilistic models such as the hidden Markov models (HMMs) (Hassan, 

2009) and Bayesian networks (BNs) (Sarkar and Sriram, 2001, Zuo and Kita, 2012)

are widely used not only for prediction, but also as expert systems or decision support 

systems for academic R&D. Since the 2000s, as support vector machines (SVMs) 

have been increasingly recognized for their key role in machine learning, more and 

more applications have been proposed in the fields of management and marketing 

(Hu and Zhang, 2008, Guo et al., 2009, Chen and Fan, 2012).

More recently, the application of machine learning technologies to contexts of 

supply chain management has been investigated. For example, Carbonneau et al.

(2007) investigate the applicability of advanced machine learning techniques (e.g., 

ANN and SVM) to forecast distorted demand at the end of a supply chain; Chou 

and Chang (2008) proposed a decision support system based on a strategy-aligned 

fuzzy approach for solving supplier/vendor selection problems from perspectives 

of strategic supply chain management; and other authors used an SVM to forecast 

customer–supplier relationships (Guo et al., 2009, Hu and Zhang, 2008, Mori et 

al., 2012). However, real world data are difficult to obtain before actual transactions 

are contracted and launched (Mori et al., 2012). In obtaining actual data on each 

enterprises from commercial business databases, Mori et al. (2012) designed features 

of customer–supplier relationships and proposed machine learning instances via a 

web system that can automatically recommend a list of potential business partners 

for a given enterprise.

Among these previous studies, Mori et al. (2012) utilized an integrated SVM 

for customer–supplier relationships to predict focal relationships. Fewer studies 
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Figure 1. Overview of the SNA-based prediction proposal for finding business partners.

utilize the relational features of business data mining; however, Mori et al. (2012)’s 

research is closely related to the link-prediction problem. For link-prediction 

problems, the utilization of relational features intrinsic to a network can draw 

meaningful inferences from observed network data. Therefore, this article proposes

an SNA-based prediction model of customer–supplier relationships. We apply a 

machine learning approach that captures the effects of both EAs and NCs, and we 

familiarize the readers with this new methodological approach as a contribution to 

the literature on supply chain design and management.

3. Methodology

3.1. Basic concept

Figure 1 presents the basic principles of our methods, which involve applying 

SNA techniques to supply network analysis. Two databases are used as raw 

data. One records industrial information on enterprises, and the other records 

transaction relationships among them. Both are associated with preprocessing and 

are transferred to attribute generator, community detector and centrality generator.

Industrial data are managed during the information processing and are then 

transformed into enterprise attributes (e.g., capital, founding date, etc.) by using 

an attribute generator. Transaction relationships are managed through the SNA 

processing, and are then separated over two phased of sub-processing. During the 

first round of sub-processing, supply networks based on transaction relationships 

are transferred to a community detector, where obtained communities are densely 

connected inside but are sparsely connected to each other communities outside. 

During the second round of sub-processing, the supply network is transferred 

to a centrality generator, where network centralities (e.g., degree, closeness and 

betweenness) are determined for each enterprise. In the supply network, enterprises 

and their transaction relationships are represented by nodes and links, respectively, 
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Figure 2. Flowchart of the proposed algorithm.

and centralities reveal their features and positions in the network as shown in 

Figure 1. (In the network obtained from the centrality generator, nodes are colored 

and sized by degree.)

Finally, we propose a prediction model based on enterprise attributes,

communities and network centralities using machine learning techniques. During 

this processing, we estimate the parameters of the model. Recommendation,

prediction and estimation results for identifying business partners are extracted.

The algorithm of our proposal is illustrated in Figure 2 and is summarized as 

follows:

1. Input the transaction data and construct a supply network based on these data.

2. Calculate modularity levels of the current supply network and save them as 

𝑄max.

(a) Use the Newman method (Clauset et al., 2004) to detect and separate 

communities in the supply network.

(b) Calculate modularity levels for all new communities and save them as 𝑄.

(c) If 𝑄 > 𝑄max, 𝑄max = 𝑄 and one may progress to step (a).

3. Calculate network centralities for each enterprise in individual communities.
liyon.2016.e00123
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4. Input the enterprise data and extract attributes for each enterprise from these 

data.

5. Use an SVM to train and model customer–supplier relationships based on 

transaction and enterprise data.

6. Use this inference engine to predict and find latent business partners.

3.2. Newman method

Real world networks such as food web, social media, and citations often 

have community structures. Nodes represent entities (e.g., animals, persons, and 

articles), and edges represent interactions (e.g., feeding, communicating, and citing); 

Therefore, entities are characterized by node connections of the same community 

with dense edges compared to nodes in other communities connected by sparse 

edges. Clauset et al. (2004) propose a fast algorithm, the Newman method, that 

involves employing a greedy search without repeating calculations for each edge. The 

Newman method is a fast modularity algorithm for community structure inference 

that maximizes modularity 𝑄 as follows:

𝑄 =
∑
𝑖

(𝑒𝑖𝑖 − (
∑
𝑗

𝑒𝑖𝑗)2) =
∑
𝑖

(𝑒𝑖𝑖 − 𝑎2
𝑖
), (1)

where 𝑒𝑖𝑖 denotes the fraction of edges in community 𝑖, 𝑒𝑖𝑗 denotes the fraction of 

edges that link nodes in community 𝑖 to nodes in community 𝑗, and 𝑎𝑖 denotes the 

fraction of edges that link nodes in community 𝑖 to all other communities.

The operation process of the Newman method (Clauset et al., 2004) is a 

hierarchical agglomeration algorithm that detects community structures and that 

focuses on changes Δ𝑄 in modularity as

Δ𝑄 = 𝑒𝑖𝑗 + 𝑒𝑗𝑖 − 2𝑎𝑖𝑎𝑗 , (2)

which is calculated for either pair of communities in a network and selects the largest 

Δ𝑄 of those that combine them. The Newman method proposed by Clauset et al.

(2004) can be described as follows:

1. Calculate modularity as 𝑄 for the initial network (all nodes are independent).

2. Calculate Δ𝑄 for pairs of communities (or nodes).

3. Select the largest Δ𝑄 to combine, and add it to 𝑄.

4. Repeat steps 2 to 4 until 𝑄 has no more increments.
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3.3. Network centrality

According to the social network perspective, a network consists of entities (i.e., 

enterprises) represented by nodes, and the ties (i.e., customer–supplier relationships) 

that link them represented by links. In a supply network context, entities reflect 

customers and suppliers linked by activities related to the procurement and

transformation of raw materials for producing and delivering goods and services.

3.3.1. Degree centrality

The degree is the simplest centrality measure of network theory and is defined as 

the number of links incident upon a node:

𝐶𝐷(𝑣𝑖) =
𝑛∑

𝑗=1,𝑖≠𝑗
∧(𝑣𝑖, 𝑣𝑗) (3)

where for a given node 𝑣𝑖, ∧(⋅) = 1 when a link exists between 𝑣𝑖 and 𝑣𝑗 . 

Otherwise, ∧(⋅) = 0. Although degree centrality can be simply calculated using 

Eq. (3), it is intuitive and interpretable to measure the importance (e.g., activity and 

cohesiveness) of a node. Particularly for a directed network, the degree is separated 

into indegree and outdegree measures, which denotes the number of links to a node 

from others and the number of links to other nodes from that node, respectively. In 

a supply network, an enterprise with a higher degree centrality value is recognized 

as an enterprise with more direct contacts than other enterprises and thus has the 

potential to affect others through operational decisions and strategic behavior (Kim 

et al., 2011).

3.3.2. Closeness centrality

Closeness was first proposed by Sabidussi (1966), and is conceptually the simplest 

measure that identifies the centrality of a point by summing the geodesic distances 

from a point to all other points in a network. For a given point 𝑣𝑖 closeness is given 

by

𝐶𝐶 (𝑣𝑖) =
1∑𝑛

𝑗=1,𝑖≠𝑗 𝑑(𝑣𝑖, 𝑣𝑗)
(4)

where 𝑑(𝑣𝑖, 𝑣𝑗) denotes the number of edges in the shortest path linking 𝑣𝑖 to 𝑣𝑗 , and 

when finding the shortest path, all links are considered to be undirected. In contrast 

to degree, which presents the egocentric centrality measures of a node, closeness 

centrality is a sociocentric measure of a node rather than an egocentric measure 

(Marsden, 2002). Eq. (4) shows that node 𝑣𝑖 with a higher closeness level implies 
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a shorter total distance from 𝑣𝑖 to all other nodes sequentially. In a supply network, 

closeness centrality can be considered a measure for flow speed (i.e., material or 

product) of a product distribution for an enterprise or as the relay speed of an entire 

supply chain.

3.3.3. Betweenness centrality

Betweenness measures how often a node appears on the shortest paths between 

two other nodes in a network. Betweenness is introduced as a centrality measure to 

quantify such frequency as follows:

𝐶𝐵(𝑣𝑖) =
𝑛∑

𝑗=1,𝑖≠𝑗

𝑗−1∑
𝑘=1,𝑖≠𝑘

𝜎𝑗𝑘(𝑣𝑖)
𝑔𝑗𝑘

(5)

where 𝑔𝑗𝑘 denotes the total number of shortest paths linking 𝑣𝑗 and 𝑣𝑘, and 𝜎𝑗𝑘(𝑣𝑖)
denotes the number of shortest paths that are involved in 𝑣𝑖. Betweenness centrality 

presents egocentric measures of a node between two other nodes in an entire network 

and presents sociocentric measures as it lies on the shortest available path. In supply 

networks, enterprises with high betweenness centrality play hub or pivotal roles 

that involve exchanging information with other relational points. However, high 

betweenness centrality resembles closeness, as the enterprises have the opposite 

function in a contractual supply network.

3.4. Support vector machine

A support vector machine (SVM) (Vapnik, 1995) belongs to the supervised 

learning theory group that is comparatively effective for classification, regression, 

and clustering tasks. Compared to other learning algorithms, an SVM can effectively 

manage high dimensional data space owing to its unique kernel ingredients. Different 

kernel functions can easily generate a set of decision functions even when the number 

of dimensions is greater than the total number of samples. During the data modeling 

phase, few data are learned in regards to the number of data points that are close to 

the data separating hyperplane, which we refer to as support vectors. Therefore, an 

SVM acts in the learning space as a memory efficient learning algorithm.

In this article, let us regard 𝑛 as the i.i.d. sample: (𝑥𝑐1 , 𝑥𝑠1 , 𝑦1), ⋯ , (𝑥𝑐𝑛 , 𝑥𝑠𝑛 , 𝑦𝑛), 
where 𝑥𝑐𝑖 and 𝑥𝑠𝑖 denote customer and supplier features, respectively, and 𝑦𝑖 =
{+1, −1} denotes the class label for 𝑥𝑐𝑖 and 𝑥𝑠𝑖 . To obtain a better general decision 

surface, we first nonlinearly transform a set of input vectors 𝐱 = {𝑥𝑐1 , 𝑥𝑠1 , ⋯ ,

𝑥𝑐𝑛
, 𝑥𝑠𝑛} into a high-dimensional feature space, and the decision function 𝑓 can be 

written as
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𝑓 (𝐱) = ℎ(𝐱) + 𝑏 (6)

where ℎ(𝐱) = ∑𝑛

𝑖=1 𝑦𝑖𝛼𝑖(𝜙(𝐱𝑖) ⋅ 𝜙(𝐱)). Using the kernel trick, the inner product can 

be replaced with 𝐾(𝐱𝑖 ⋅ 𝐱). The final decision function in turn becomes:

𝑓 (𝐱) =
𝑛∑
𝑖=1

𝑦𝑖𝛼𝑖𝐾(𝐱𝑖 ⋅ 𝐱) + 𝑏 (7)

where 𝐾(𝐱𝑖 ⋅𝐱), the kernel, is the most import ingredient of SVM theory. Among all 

of the hyperplanes, the best hyperplane (𝑓 (𝐱) = 0) can be found when the distance 

between two margin hyperplanes (𝑓 (𝐱) = −1;𝑓 (𝐱) = 1) is maximized. In this study, 

an SVM is applied to extract customer–supplier relationships depending on the value 

of Eq. (7) in order to separate two classes as follows:

𝑦𝑖 =

{
1 𝑓 (𝐱𝑖) ≥ 1,

−1 𝑓 (𝐱𝑖) ≤ −1.

When observed data are applied to an SVM, in order to find an appropriate kernel 

to map the observed data, several typical kernels of linear and nonlinear classification 

are proposed for the SVM as follows:

• Linear kernel: 𝐾(𝐱𝑖 ⋅ 𝐱𝑗) = (𝐱𝑖 ⋅ 𝐱𝑗).
• Polynomial kernel: 𝐾(𝐱𝑖 ⋅ 𝐱𝑗) = (𝐱𝑖 ⋅ 𝐱𝑗 + 1)𝑑 .

• Gaussian radial basis function: 𝐾(𝐱𝑖 ⋅ 𝐱𝑗) = exp(−𝛾 ∥ 𝐱𝑖 − 𝐱𝑗) ∥2 where 𝛾 > 0. 

This is sometimes parameterized using 𝛾 = 1
2𝜎

2.

In contrast to prior researchers such as Mori et al. (2012) who only use the 

linear kernel, we also determine predictive accuracy levels by comparing with the 

polynomial kernel from hyperparameter 𝑑 = 2 after the increasing adjustment of the 

𝑑 value from 1 to 𝑑 = 5, and with the Gaussian radial basis function (RBF) from 

hyperparameter 𝜎 = 0.2 after the increasing adjustment of the 𝜎 value from 0.2 to 

1.0.

4. Experimental

4.1. Data preprocessing

4.1.1. Data explanation

The experiments focus on supply chains in central Japan (data were provided 

by Tokyo Shoko Research Limited http://www.tsr-net.co.jp/en), one of the largest 
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Table 1. Definitions and explanations of the variables.

Type Feature Format

Enterprise Attributes Capital 100k – 397,049,999k (JPY)

Founding Date 1906 – 2012 (YYYY)

Number of Employees 1 – 69,125 (#)

Location Code 40 – 50 (ten prefectures)

Industry Category Code 0100 – 9999

Sales 0k – 8,241,176,000k (JPY)

Profit −5,351,000k – 79,164,000k (JPY)

Network Centralities Degree Eq. (3)

Closeness Eq. (4)

Betweenness Eq. (5)

economic regions in the country. We select 182,538 enterprises including 598,721 

transactions for central Japan, in which there are 10 prefectures and over 20 types of 

industrial categories.

Through the experiments, the main attributes are extracted from enterprise data, 

and their formats are described in Table 1. This is a full-scale data set for the entire 

Japanese industry that includes basic capital, founding date, employee quantity, 

location, industry category, sales, and profit data. These features are shown in the 

“Enterprise Attributes” rows. In addition to fundamental enterprise attributes, for 

each given enterprise, the data set also provides a list of customers (suppliers) 

numbering in the tens of thousands. Using these enterprise relationship data, 

we design features of customer–supplier relationships as shown in the “Network 

Centralities” rows in Table 1, which are described in Section 3.3. Although the 

degree measure is an important centrality, we exclude this measure from the 

explanatory variables, as we use it to separate the enterprises into small and medium 

enterprises (SMEs) and large enterprises (LEs) to evaluate the customer–supplier 

relationships found through our experimental testing (Section 4.3.3).

4.1.2. Variable setup

In our experiment, we regard a pair of customer and supplier relationship as the 

response variable. As shown in Table 2, this is a Boolean variable where 1 denotes 

the existing transaction relation and −1 denotes the non-existing transaction relation.

We also design three types of explanatory variables, customer variables, supplier 

variables and dummy variables (Table 3). According to Section 3.4, let us consider 

𝑦 = 𝑓 (𝑋𝑐, 𝑋𝑠, 𝐷𝑐𝑠) for an SVM model, where 𝑦 denotes the customer–supplier 

relationship, 𝑋𝑐 and 𝑋𝑠 denote the variables shown in customer and supplier variable 

rows, respectively, and 𝐷𝑐𝑠 denotes the dummy variables of common location and 

industry category, taking a value 0 or 1 to denote the degree of difference or 

similarity.
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Table 2. Response variable.

Customer–Supplier Relationship {−1, 1}

Table 3. Explanatory variables.

Customer Variables Capital, Founding Date,

Number of Employees,

Sales, Profit,

Closeness, Betweenness

Supplier Variables Capital, Founding Date,

Number of Employees,

Sales, Profit,

Closeness, Betweenness

Dummy Variables Common Location Code,

Common Industry Category Code

Figure 3. Identifying maximum modularity in a supply network using the Newman method.

When only a real transaction relationship existing between customers and 

suppliers was observed, there were no negative samples in our data set. Therefore, 

we randomly generated the same number of customer and supplier pairs that present 

no customer–supplier relationship in the database to train the SVM model.

4.1.3. SNA of supply network

This section investigates SNA as a technical approach to the analysis of customer–

supplier relationships in supply chains by constructing supply community structures. 

We apply a fast modularity maximization algorithm (the Newman method) to detect 

and analyze communities in a supply network. This transaction structure is analyzed 

as described in Section 3.2, and the maximum modularity 𝑄 = 0.665 can be found 

when the iterative step reaches 180,518 (Figure 3). According to this corresponding 

step, the supply network of central Japan is represented in a firework-like network 
liyon.2016.e00123

lished by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00123
http://creativecommons.org/licenses/by/4.0/


Article No~e00123

14 http://dx.doi.org/10.1016/j.he

2405-8440/© 2016 The Authors. Pub
Figure 4. Supply network of the central area in the firework-like network chart.

Table 4. Detection results for each community in central Japan.

Community No. Nodes (#) Edges (#) Avg. Clustering Coefficient Avg. Path Length

M1 41,594 123,955 0.032 8.325

M2 40,291 113,546 0.022 8.843

M3 36,832 137,301 0.041 5.691

M4 22,818 56,443 0.023 9.434

M5 20,469 61,799 0.035 7.913

chart (Figure 4 was created using the Gephi open source network analysis and 

visualization software program, https://gephi.github.io/), and five main communities 

are detected in this supply network by maximizing the modularity. Table 4 shows 

detailed results for each community, and communities M1 to M5 are highlighted in 

red, blue, green, light blue and purple as shown in Figure 4(b).

As a community differs from a general cluster depending on the number of nodes, 

a community is also dependent on the number of edges. We use an average clustering 

coefficient and average path length to represent a community, which provide a node 

overview and an edge overview, respectively. Although M3 does not include the 

most nodes because it includes the most edges, M3 has the maximum clustering 

coefficient and the shortest path length. In this experiment, we focus on community 

M3, which is more densely connected than other communities, and SVM is used to 

train an essential model for M3 before we use the Newman method to separate M3 

into sparser sub-communities in Section 4.3.1.

In addition, using Eq. (3), Eq. (4) and Eq. (5), network centralities (degree, 

closeness and betweenness) are individually calculated for the enterprises in M3.
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with the linear / polynomial / RBF kernel trick.

Polynomial (𝒅) RBF (𝝈)

2 3 4 5 0.2 0.4 0.6 0.8 1.0

73.83 74.99 75.03 74.26 75.23 75.62 76.04 76.24 76.41

Table 6. SVM performance based on different costs of constraint violation.

Kernel Type RBF (𝝈 = 𝟏.𝟎)

Parameter 𝐶 𝐶 = 0.2 𝐶 = 0.4 𝐶 = 0.6 𝐶 = 0.8 𝐶 = 1.0
Accuracy (%) 75.51 75.95 76.10 76.23 76.41

Table 7. Performance comparisons of between ANN and SVM.

Model ANN (size = 4, decay = 𝟐.𝟎) SVM (𝝈 = 𝟏.𝟎, 𝑪 = 𝟏.𝟎)

Accuracy (%) 70.95 76.41

4.2. SVM model application

4.2.1. Comparisons with different models

In this study, we use prior studies (Mori et al., 2012) as a benchmark whereby the 

linear kernel is employed to train an SVM classification model based on enterprise 

attributes. As denoted in Section 3.4, the polynomial kernel and Gaussian radial basis 

function (RBF) are also used in order to compare and find an appropriate kernel to 

map the observed data listed in this article. We test individual kernel tricks based on 

enumerative hyperparameters via 5-fold cross validation. According to the results 

listed in Table 5, the RBF kernel presents better predictive capacities than the others, 

and the highest accuracy level is obtained at 𝜎 = 1.0. Here, the predictive accuracy 

level also depends on parameter 𝐶 , which denotes the costs of constraint violations 

of rule trade-offs between the correct classification and model complexities. As we 

select 𝐶 = 1.0 as the default value for the experiments described in Table 5, we 

estimate parameter 𝐶 = 0.2 by increasing the value adjustment level from 0.2 to 

𝐶 = 1.0 based on the RBF kernel with 𝜎 = 1.0. The comparison results are shown 

in Table 6, and the highest accuracy level is obtained at 𝐶 = 1.0.

We also select an artificial neural network (ANN) as another benchmark. We 

estimate the size of units in the hidden layer from 2 to 10 and the parameter of weight 

decay from 0.2 to 2.0 through a grid search, and the optimal model can be obtained 

at size = 4 and decay = 2.0. The comparison results for ANN and SVM are shown 

in Table 7, and an SVM of 𝜎 = 1.0 and 𝐶 = 1.0 is more accurate than an ANN 

of size = 4 and decay = 2.0. However, according to our experiments, the predictive 

accuracy level can be improved by using higher RBF kernel parameter values of 𝜎

and 𝐶 . We stop at 𝜎 = 1.0 and 𝐶 = 1.0 to follow the classification style of the SVM 

application in practice.
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Table 8. Estimations of predicted customer–supplier relationships in M3.

Enterprise Attributes (EA) Network Centralities (NC) EA & NC

Accuracy (%) 76.41 73.26 80.71

Positive (+)

Precision (%) 74.71 78.92 77.94

Recall (%) 79.57 63.48 85.65

F-value (%) 77.06 70.36 81.61

4.2.2. Comparisons with different variable combinations

As the optimal SVM model is obtained when using an RBF kernel parameter of 

𝜎 = 1.0 and a cost of constraint violation of 𝐶 = 1.0, the following experiments 

are based on the same condition. This section introduces two more explanatory 

variables: closeness and betweenness. As described in Section 3.3, closeness is 

a measure that reflects an enterprise’s ability to spread and relay information to 

others in a supply chain while accounting for the enterprise’s sociocentric role, and 

betweenness measures an enterprise’s ability to intervene or mediate interactions 

among other enterprises with respect to a supply chain and while accounting for 

both egocentric and sociocentric roles.

As shown in Table 8, we conduct a multivariate analysis to examine the 

association between enterprise attributes and network centralities. We then

sequentially introduce groups of variables into the SVM as follows:

1. Variables of “Enterprise Attributes” only.

2. Variables of “Network Centralities” only.

3. Variables of “Enterprise Attributes” and “Network Centralities” together.

However, when NC variables are used alone, predictive accuracy levels are the 

lowest. After introducing NCs (closeness and betweenness) and the EA variables, 

the results (as shown in Table 8) improve significantly. The predictive accuracy level 

increases from 76.41% to 80.71%, and the predictive precision level increases from 

74.71% to 77.94%. Additionally, in this case, the highest recall and F-value values 

of 85.65% and 81.61%, respectively, are achieved.

4.3. Accuracy comparison and discussion

4.3.1. Detection of sub-communities using the Newman method

In this section, we apply the Newman method once more to separate M3 into 

sparser sub-communities. The maximum modularity level 𝑄 = 0.549 can be found 

when the iterative step reaches 36,608 (Figure 5) and four sub-communities are 
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Figure 5. Identifying maximum modularity in M3 using the Newman method.

Figure 6. Supply network S1 in the firework-like network chart.

detected from M3. Table 9 shows the division of each sub-community in detail. As 

shown in Figure 6, sub-community S1 is extracted from the main community M3 

(Figure 6(a)), in which LEs (i.e. enterprises have the higher degree) are represented 

as large nodes (Figure 6(b)).

For each sub-community, network centralities (degree, closeness and

betweenness) of individual enterprises are recalculated using Eq. (3), Eq. (4) and 

Eq. (5).

4.3.2. Comparisons with different communities

This section compares the prediction performance of each sub-community shown 

in Table 4 and Table 9. For the same experimental testing conditions, we use an 
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Table 9. Detection results for each community in M3.

Community No. Nodes (#) Edges (#) Avg. Clustering Coefficient Avg. Path Length

S1 9,830 40,038 0.061 4.982

S2 7,713 18,767 0.037 7.416

S3 6,717 19,179 0.045 6.356

S4 6,661 14,582 0.036 8.778

Table 10. Estimations of predictive performance for different communities.

Community Accuracy (%)
EA NC EA & NC

Original 83.52 71.76 86.93

M1 80.73 74.17 86.35

M2 75.43 74.54 83.85

M3 76.41 73.26 80.71

M4 70.70 74.94 78.30

M5 80.85 73.53 86.03

S1 72.55 75.94 77.76

S2 72.50 74.52 79.03

S3 72.91 74.66 78.85

S4 71.90 74.42 78.65

RBF kernel parameter of 𝜎 = 1.0, a cost of 𝐶 = 1.0, and both EA and NC 

variables as explanatory variables. The numerical examples shown in Table 10

reveal the predictive performance of the original community and sub-communities 

in comparison with the accuracy values.

We first focus on results found for the original community and for its sub-

communities (M1, M2, M3, M4 and M5). For each sub-community, the predictive 

results show lower accuracy levels than those of the original community when only 

EA variables are used, and higher accuracy values when only NC variables are used. 

However, the predictive accuracy derived when using EA & NC variables is also 

worse than that for the original community. Compared to the predictive accuracy 

rate of increase (EAs vs. EAs & NCs) which is improved by 4.08% (from 83.52% 

to 86.93%) for the original community, the rate of increase for each sub-community 

is improved by 6.96% (M1), 11.16% (M2), 5.63% (M3), 10.75% (M4) and 6.41% 

(M5). Next, we focus on the results for community M3 and for its sub-communities 

(S1, S2, S3 and S4), for which we draw the same conclusions. When introducing 

NC variables with EA variables, the predictive accuracy for each sub-community is 

improved by 7.18% (S1), 9.01% (S2), 8.15% (S3) and 9.39% (S4). All of these values 

are higher than that for community M3.

The results are summarized and illustrated in Figure 7. The predictive accuracy 

based on the NC variables (gray histogram) and the rate of increase after introducing 

NC and EA variables (line) can be written as {S1, S2, S3, S4} > M3 > original 

community. On the opposite end, the predictive accuracy using EA variables (white 
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Figure 7. Comparisons of the predictive performance of the hierarchical communities.

histogram) can be written as {S1, S2, S3, S4} < M3 < original community. The 

Newman method offers an optimal community division that hierarchically separates 

an original community into sub-communities. Within sub-communities, nodes are 

connected much more densely than they are with other sub-communities, allowing 

the NC variables to play a leading role in predicting customer–supplier relationships. 

Therefore, when detecting sub-communities using Newman method, predictive 

performance levels can be dramatically improved (the rate of increase can be written 

as {S1, S2, S3, S4} > M3 > original community and can be represented as a 

polygonal line in Figure 7), as NCs of each enterprise in individual sub-communities 

are recalculated when fitting the new supply network.

4.3.3. Comparisons between enterprises of varying sizes

In this section, we present our analyses of enterprises of different sizes from a 

network-based perspective, and sub-community S1 is used as the analysis target. 

Here, we employ the network centrality (degree) as the separating indicator rather 

than capital or employee quantity, as the capital and employee quantity are individual 

and attitudinal measures of enterprise size. A degree is defined as the number of 

edges from which a node connects to other nodes in a network, and it is recognized 

as an organizational and behavioral measure. An enterprise with a higher level of 

degree centrality has more direct relationships with other enterprises (customers or 

suppliers) in a supply network. Here, when an enterprise has more than 8 customers 

and suppliers (the average degree of S1 is 8.15), this enterprise is recognized as 

an LE. Otherwise, the enterprise is recognized as an SME. For a given customer–

supplier relationship, enterprises are grouped by degree into 4 groups (LE–LE,

LE–SME, SME–LE, SME–SME). Information on each group is shown in Table 11.
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Table 11. Degree-specific results for each group.

Customer–Supplier Relationship, Degree-specific Nodes (#) Edges (#)

LE–LE Group 2,317 16,080

LE–SME Group 8,007 12,973

SME–LE Group 6,106 7,672

SME–SME Group 4,004 3,313

Table 12. Comparisons between enterprises by degree based on EA, NC and EA & NC variables.

Customer–Supplier Relationship EA NC EA & NC

LE–LE

Accuracy (%) 67.98 70.73 72.73

Positive (+)

Precision (%) 82.79 77.23 80.65

Recall (%) 49.88 63.41 63.79

F-value (%) 62.25 69.64 71.24

LE–SME

Accuracy (%) 70.59 68.31 72.39

Positive (+)

Precision (%) 79.67 73.88 79.85

Recall (%) 61.18 63.97 65.40

F-value (%) 69.12 68.57 72.85

SME–LE

Accuracy (%) 61.44 74.11 74.47

Positive (+)

Precision (%) 62.18 68.10 70.57

Recall (%) 73.34 98.11 90.62

F-value (%) 67.30 80.40 79.35

SME–SME

Accuracy (%) 62.30 66.87 71.15

Positive (+)

Precision (%) 62.84 61.70 67.82

Recall (%) 70.28 98.46 86.48

F-value (%) 66.35 75.86 76.02

Figure 8. Comparisons of the predictive performance of the different enterprise groups.

In this experiment, we also compare accuracy, precision, recall and F-value

measures for each group using the EA variables, NC variables and EA & NC 

variables, respectively (as shown in Table 12). The comparison results are presented 

in Figure 8 and are summarized as follows:
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1. When only using EA variables: As the customers are LEs in LE–LE and LE–

SME groups, the predictive accuracy (white histogram) is much higher than 

that for the SME–LE and SME–SME groups, for which customers are SMEs. 

The best and the worst accuracy levels are obtained for LE–SME and SME–

LE groups, respectively. According to relationships like the customer–supplier 

relationship, the results show that when SMEs appear to be suppliers, it is easy 

for them to find customers as business partners when customers are LEs. By 

contrast, when SMEs appear to be customers, it is difficult for them to find 

suppliers as business partners, especially if SMEs wish to develop markets with 

LEs.

2. When only using NC variables: The predictive accuracy (gray histogram) and 

F-value (gray histogram with diagonal lines) for LE–LE and SME–LE groups 

and for SMEs are improved in comparison with those of case 1. However, for 

the LE–SME group, the predictive accuracy and F-value are not improved, and 

using NC variables alone can result in adequate predictive performance (almost 

the same as that for case 1).

3. When using EA & NC variables: The predictive accuracy (black histogram) 

of all the groups is improved relative to that of cases 1 and 2. Excluding the

SME–LE group, the F-value (black histogram in diagonal lines) is also improved 

in the other groups relative to that of cases 1 and 2. While the F-value of case 3 

for the SME–LE group is slightly worse than of case 2, it is still dramatically 

improved over case 1 by 17.90%.

These results present three operational improvements to the web system proposed 

by Mori et al. (2012), which automatically recommends a list of potential business 

partners for a given enterprise. First, we conduct an SNA to structurally analyze a 

supply network and to introduce network centrality to machine learning to predict 

customer–supplier relationships. Compared to the benchmark measure listed in Mori 

et al. (2012), when we applied closeness centrality and betweenness centrality values 

as new explanatory variables, the predictive accuracy was dramatically improved. 

Second, one issue remained unaddressed in Mori et al. (2012)’s study. When a user 

searches for a new enterprise with enterprise attributes that are not included in a 

database, web systems find no business partners. Here, we propose a learning model 

with network centralities of high predictive accuracy that uses network centralities 

as explanatory variables. In searching for a new enterprise based on its name, a web 

system can return a recommended list of business partners, by identifying enterprise 

actors of a certain business community bases on network centralities. Third, unlike 

LEs, for SMEs, it is much more difficult to find potential business partners and to 

develop new business opportunities using enterprise attributes alone. Our proposed 

method offers a higher degree of predictive accuracy in terms of SME–LE and

SME–SME relationships than the original model, and in turn, SMEs may obtain 
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effective recommendations from web systems that can lead them to future enterprise 

success.

5. Conclusions

This article proposes an SNA-based prediction method for identifying business 

partners. We examined several important methodological issues related to SNA as 

an alternative means of analyzing supply chains relative to the traditional linear 

perspective, and we explored a machine learning approach to the supply networks 

based on customer–supplier relationships. First, we found that the SNA approach 

not only offers a new perspective on customer–supplier relationships as network 

structures, and also allows NCs to reveal and consider dynamic features of individual 

enterprises. In contrast to prior studies that have used EAs alone as explanatory 

variables, our proposed approach, which combines NCs and EAs, sufficiently 

predicts customer–supplier relationships. Second, we demonstrated the effectiveness 

of our proposed approach when applied to LEs and SMEs. From our experiments, 

we found that the integration of NCs with EAs can improve levels of predictive 

performance for all combinations of customer–supplier relationships. Especially for 

SMEs which are vulnerable groups in business environments, the predictive results 

are accurate enough for SMEs to develop partnerships with LEs and other SMEs. We 

believe that these findings can familiarize other researchers with NCs to stimulate 

new approach on the design of supply chains and to also provide insight into the 

further development of business partner recommendation systems based on machine 

learning.

Our aim for the future extension of this article is to achieve the levels of highest 

accuracy levels possible. As a limitation of this article, while our proposed method 

outperforms other methods, its predictive performance must still be estimated in 

search of the optimal combination of parameters. We also plan to generate new 

variables (i.e., text information on enterprises that can be extracted from company 

websites and news media sources) and to then customize mapping approaches for 

these variables to gain perspective on actual business conditions.
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