
Formal Methods for Human-
automation Interaction

Matthew Bolton

 System Failure is Complex

 Interactions between system
components results in
breakdowns

2

 Human-automation Interaction:

 A major contributor to failures in
safety critical systems

3

Medicine

44,000 and 98,000 deaths and
1,000,000 injuries a year

Aviation

75.5% accidents in general aviation and
~ 50% in commercial aviation

Highway Safety

75% of all roadway crashes

 Traditional analysis and evaluation
techniques can miss human
interactions that could lead
to system failure

4

5

 Computer hardware and
software engineers have
similar problems

 Formal Methods:

 Tools and techniques for proving that a
system will always perform as intended

6

“You want proof? I’ll give you proof!”

 Formal Methods:

 Tools and techniques for proving that a
system will always perform as intended

– Modeling – Representing a system’s
behavior in a mathematical formalism

– Specification – Formally expressing a
desirable property about the system

– Verification – Proving that the model
adheres to the specification

 7

 Model checking:

 An automatic means of performing
formal verification

8

System
Model

Model
Checker

Verification
Report

Specification

 Model checking:

 An automatic means of performing
formal verification

9

System
Model

Model
Checker

Verification
Report

Specification

A Finite State Machine Model
Represents System Behavior

Variable 1

Variable N

 Model checking:

 An automatic means of performing
formal verification

10

System
Model

Model
Checker

Verification
Report

Specification

A Temporal Logic Specification Property Asserts
Desirable Qualities About the System

For example: “The system should never reach unsafe state X”
G ¬ (X)

Or, “The system should always eventually reach state Y”
F Y

 Model checking:

 An automatic means of performing
formal verification

11

System
Model

Model
Checker

Verification
Report

Specification

A model checker “searches”
through the model’s statespace

looking for violations

 Model checking:

 An automatic means of performing
formal verification

12

System
Model

Model
Checker

Verification
Report

Specification

A confirmation or
counterexample is

returned

Counterexample

A sequence of states that lead up to a violation

…

Variable 1

Variable N

13

Counterexample

A sequence of states that lead up to a violation

…

Variable 1

Variable N

14

15

Model Checking Really Works!!
Used to prove that a floating point
division bug was removed from the

design of the Intel Pentium processor

Used to stabilize Windows by
allowing hardware creators to
model check that their drivers

adhered to the required protocol

Let’s dig into this a little more …

Modeling

You want to model system behavior with robust
mathematics
• This can be many things
• Usually, this means using a finite state transition

system:
– System has a finite number of states
– There are a set of initial states
– There are inputs
– States transition between each other based on the inputs

or other indicators of state
– States and/or transitions can map to outputs

Modeling

Automata theory offers many finite state
machine constructs:

• Deterministic finite state machines

• Nondeterministic finite state machines

• Mealy machines

• Moore machines

• Etc.

Modeling

However, most analyst use more expressive notations
(expressively identical, but often easier to work with):

• State Charts

• Petri Nets

• Special formal modeling languages
(promella, SMV, SAL, etc.)

Modeling

However, most analyst use more expressive notations
(expressively identical, but often easier to work with):

• State Charts

• Petri Nets

• Special formal modeling languages
(promella, SMV, SAL, etc.) We will focus on these for the

remainder of this presentation
because they represent many of
the formal modeling concepts in

a visual notation

State Charts

• A more expressive
formalism for modeling
complex system behavior

• A visual formalism

• Hierarchical

• Has memory / history

• Can have concurrency

Down Up

HumanAction = FlipSwitch1

HumanAction = FlipSwitch1

Down Up

HumanAction = FlipSwitch2

HumanAction = FlipSwitch2

Off On

(Switch1 = Down ˄ Switch2 = Up)

˅ (Switch1 = Up ˄ Switch2 = Down)

(Switch1 = Down ˄ Switch2 = Down)

˅ (Switch1 = Up ˄ Switch2 = Up)

Light

Switch2

Switch1

State Charts

• A more expressive
formalism for modeling
complex system behavior

• A visual formalism

• Hierarchical

• Has memory / history

• Can have concurrency

Down Up

HumanAction = FlipSwitch1

HumanAction = FlipSwitch1

Down Up

HumanAction = FlipSwitch2

HumanAction = FlipSwitch2

Off On

(Switch1 = Down ˄ Switch2 = Up)

˅ (Switch1 = Up ˄ Switch2 = Down)

(Switch1 = Down ˄ Switch2 = Down)

˅ (Switch1 = Up ˄ Switch2 = Up)

Light

Switch2

Switch1
Example: State Chart for representing a

light switch system

• Concurrent machines represent the
state of each switch and the light
itself

• States are rounded rectangles
• Each component has an initial state

(pointed to by a dotted arrow)
• Boolean logic indicates when a

transition (arrow) occurs
• The state of the light will change in

response the switches

• More info on state charts
http://www.wisdom.weizmann.ac.il/~har
el/SCANNED.PAPERS/Statecharts.pdf

For Safety Critical System…

• Model the behavior of the target system

• Encompass the interactions between system
components in the model

• Prove that the system adheres to the
specification

Specification

• A specification asserts properties you want to
be true in the system

• Usually reasons about the relationship of
different states in ordinally over time

• Usually expressed as a temporal logic

Specification with Temporal Logic

• Temporal logic allows us to reason about
states and/or variable values over ordinal time

• We can assert things like:

– This should never be true

– This should always be true

– This should always happen next

– X should always happen before Y

– Etc.

Specification with Temporal Logic

Two dominant types:

• Linear Temporal Logic ()
– Reasons about all paths through the model

• Computation Tree Logic ()
– Reasons about path through a computation tree

(there can be branching points)

• Both use basic, binary logic operators but add
some additional operators

Name Operator Interpretation

Global
ϕ G ϕ

ϕ □ ϕ
ϕ will always be true

NeXt
ϕ X ϕ

ϕ ○ ϕ
ϕ will be true in all

next states

Future

ϕ F ϕ

ϕ ◊ ϕ
ϕ will eventually be true

Until ϕ U ψ ϕ will be true until ψ is true

Temporal operators:

Examples

Jon is always late: G (Jon is late)

I will have a job in the future: F (I have a job)

If I flip a switch, the light will be on in the next state:
(Switch1 = Flipped → X (Light = On))

The light will be on until I unflip a switch:
(Light = On U Switch1 = UnFlipped)

What about this?
G (Switch1 = UnFlipped → X ((Switch1 = Flipped ⋀ Light = On)
U (Switch1 = UnFlipped)))

CTL operators are a combination of a path
qualifier and a temporal operator:

Path Qualifier:

A – Through all paths

E – Through one or more paths

CTL operators are a combination of a path
qualifier and a temporal operator:

Path Qualifier:

A – Through all paths

E – Through one or more paths

LTL Operators are the
equivalent of CTL operators

that start with A

CTL operators are a combination of a path
qualifier and a temporal operator:

Path Qualifier:

A – Through all paths

E – Through one or more paths
We can reason about

existence using E:
You can see if

something is possible

What to check for…

• Safety properties:
– Properties starting with AG (CTL) or G (LTL)

Something good should always be true
or something bad should never happen
“The machine should never irradiate the patient”

• Liveness:
– Assertions that use AF (CTL) or F (LTL)

Something good eventually happens
Response: something happens in response to something earlier
“the system always eventually stops running”

• Existence:
– Assertions that use EF

The system can do something
“The system can allow the person to turn the system off”

What to check for…

• Safety properties:
– Properties starting with AG (CTL) or G (LTL)

Something good should always be true
or something bad should never happen
“The machine should never irradiate the patient”

• Liveness:
– Assertions that use AF (CTL) or F (LTL)

Something good eventually happens
Response: something happens in response to something earlier
“the system always eventually stops running”

• Existence:
– Assertions that use EF

The system can do something
“The system can allow the person to turn the system off”

Only CTL can positively
assert existence

Clearly this can be used for
evaluating system safety…

Using Formal Methods for
Human-automation Interaction

• Proving properties about interfaces to
encourage safety

– Usability analyses

– Mode confusion analyses

• Proving properties about system safety with
models of human behavior

– Cognitive models

– Task models

Usability Analyses

• Model interfaces as finite state machines

• Prove properties indicative of good usability
about the interfaces
– Reachability (interface states can be reached)

– Visibility (the interface should give feedback)

– Task-related (things can be accomplished)

– Reliability (things that make the system reliable):
• Undoability (things can be done)

• Consistent behavior
(the interface always responds the same way)

• Deadlock freedom

Mode Confusion

Mode Confusion

You model the state of the automation

Mode Confusion

You model the state of the automation,
the human-automation interface

Mode Confusion

You model the state of the automation,
the human-automation interface , and

the human mental model

Checking for Mode Confusion with
Model Checking

Check for Correspondence

You model check that the
human mental model is always

an acceptable abstraction of the
automation. If not, there is

possible mode confusion and/or
automation surprise

Checking System Safety
with Human Behavior

Modeling cognitive behavior …

Checking System Safety
with Human Behavior

Modeling cognitive behavior …

Checking System Safety
with Human Behavior

Modeling cognitive behavior …

Other system elements are
modeled as finite state

machines or similar
formalisms

(This may include a model of
the environment)

Checking System Safety
with Human Behavior

Modeling cognitive behavior …

The human cognition is modeled as a collection
of production rules:

• Attending to different information
• Processing / categorizing that information
• Selecting a response
• Performing the selected response

Checking System Safety
with Human Behavior

A → X
B → Y
C → Z

…

You can check for a number of things:

• That the system is safe for the modeled human behavior or meets other
performance requirements

• That the human operator will always achieve their desired goals
Note: errors can be organically produced by the production rules

Cognitive Models are Great But…

• The cognitive architectures are not widely used

• The use of cognitive models can lead to complex
models which can limit analyses

Checking System Safety
with Human Behavior

Task analytic behavior models…

Checking System Safety
with Human Behavior

Task analytic behavior models…

Checking System Safety
with Human Behavior

Task analytic behavior models…

Other system elements are
modeled as finite state

machines or similar
formalisms

(This may include a model of
the environment)

Checking System Safety
with Human Behavior

Task analytic behavior models…

Human Behavior is Modeled Using
Task Analytic Behavior Models

• Product of a cognitive task analysis
• Hierarchy (network) of goal

directed activities and actions
• Strategic knowledge controls when

activities execute and complete
• Modifiers control relationships

between activities and actions

Checking System Safety
with Human Behavior

Task analytic behavior models…

Human Behavior is Modeled Using
Task Analytic Behavior Models

Task model are given formal
semantics that treat them as a finite

state machine

Checking System Safety
with Human Behavior

Task analytic behavior models…

aFire

aGo
Back

Press
Up

aFire
Beam

xor

ord

InterfaceState
= PrepareToFireEBeam

˅ InterfaceState
= PrepareToFireXray

InterfaceState
≠ PrepareToFireEBeam

˅ InterfaceState
≠ PrepareToFireXray

BeamState = Ready

PressB

ord

You can check for a number of things:

• That the system is safe for the modeled human behavior or meets other
performance requirements

• That the human operator will always achieve their desired goals

Checking System Safety
with Human Behavior

Task analytic behavior models…

aFire

aGo
Back

Press
Up

aFire
Beam

xor

ord

InterfaceState
= PrepareToFireEBeam

˅ InterfaceState
= PrepareToFireXray

InterfaceState
≠ PrepareToFireEBeam

˅ InterfaceState
≠ PrepareToFireXray

BeamState = Ready

PressB

ord

• Human error must be manually
included and/or generated in the task
structure

• This allows the verification to evaluate the
robustness of the system to human error

Task Models

• More widely used than cognitive models

• Potentially more computationally efficient
than cognitive models

• Provide less cognitive explanation

• Cannot organically produce erroneous
behaviors

If this stuff is so great, why

isn’t everybody using it?

Limitations

Scalability:

Combinatorial explosion (“the state explosion problem”) limits
the size of models that can be checked and the verification time

Model Complexity

St
at

es
p

ac
e

 S
iz

e
Machine Memory Limit

Limitations

Notation expressiveness:

It can be difficult to model concepts using formal modeling
notations. Concepts such as non-linear dynamics and time can
be very tricky. Clever abstraction and slicing techniques must be
used.

Limitations

Learnability:

Formal methods can be
difficult to learn and teach

Limitations

Lack of Integration:

Formal methods are not well integrated
into systems engineering and industrial
engineering environments

Researchers are Actively Trying to
Address These Limitations

Conclusions

• Formal methods are very powerful and represent another
tool in the human factors toolbox

• Formal methods can be used to evaluate human-
automation interaction in a number of ways:
– Find usability problems
– Detect mode confusion
– Evaluate system safety and performance
– Evaluate the robustness of a system to human error

• Formal methods are limited and should thus be used
synergistically with other techniques

• Research is actively improving form human-automation
interaction analyses and integrating analysis and design
techniques

For more information…

Bolton, M. L., Bass, E. J., & Siminiceanu, R. I. (2013). Using formal verification to
evaluate human-automation interaction in safety critical systems, a review.
IEEE Transactions on Systems, Man and Cybernetics: Systems, 43(3), 488-503.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6472094

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6472094
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6472094
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6472094

