
  

  

Abstract— Brain-machine interface (BMI) devices have 
unparalleled potential to restore functional movement 
capabilities to stroke, paralyzed and amputee patients. 
Although BMI systems have achieved success in a handful of 
investigative studies, translation of closed-loop neuroprosthetic 
devices from the laboratory to the market is challenged by gaps 
in the scientific data regarding long-term device reliability and 
safety, uncertainty in the regulatory, market and 
reimbursement pathways, lack of metrics for evaluating and 
quantifying performance in BMI systems, as well as patient-
acceptance challenges that impede their fast and effective 
translation to the end user. This review focuses on the 
identification of engineering, clinical and user's BMI metrics 
for new and existing BMI applications. 

I. INTRODUCTION 

The 2013 International Workshop on Clinical Brain-
-Neural Machine Interface (BMI) Systems was held on 
February 25--27, 2013 at the Houston Methodist Research 
Institute, Houston, Texas [1]-[3]. The purpose of the 
workshop was to identify and discuss challenges and 
potential solutions leading to the development and 
deployment of interface systems based on neural activity in 
clinical applications. A review of the workshop written by 
participating trainees can be found in [1]. 

The challenges identified at the workshop fell into 6 
major categories: 1) knowledge gaps in the scientific data 
regarding long-term device reliability and safety, 2) 
uncertainty in the regulatory, market and reimbursement 
pathways, 3) lack of engineering, clinical and patient's 
metrics for evaluating and quantifying performance in BMI 
systems, 4) patient-acceptance challenges that impede fast 
and effective translation to the end user, 5) Lack of 
established mechanisms for curated data-sharing, and 6) lack 
of comprehensive clinical, technical and regulatory education 
and training for the future BMI work force. 

In this invited paper, the focus is on the challenge of 
identifying and defining acceptable BMI metrics for 
assessing and quantifying performance of new and existing 
BMI systems. The exposition below summarizes the 
discussion by participants at the Houston's workshop [1]. 
Although efforts have been made to provide an impartial and 
comprehensive review of the spectrum of opinions voiced by 
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the participants at the workshop, the author assumes 
responsibility for any errors or omissions in this short review.  

The identification and selection of suitable metrics to 
assess BCI performance has been recognized as an important 
challenge not only to properly evaluate the BMI device but 
also to allow comparisons between different BMI systems or 
between similar but non-identical tasks [4]. In this regard, 
public efforts have been recently made, including the 
Workshop on BCI metrics at the Asilomar meeting held on 
June 3-7, 2013 [5], which is summarized in [6]. A recent 
study have also addressed some challenges and limitations in 
the development and selection of BCI performance metrics 
[7], including developing efficient measurement techniques 
that adapt rapidly and reliably to capture a wide range of 
performance levels and the identification of BCI subsystems 
that may potentially restrict the maximum systems level 
performance, which is a critical factor for considerations of 
device interoperability. As the definition of metrics for BMI 
systems is a work in progress, any interested party is 
encouraged to contact the author to provide comments, 
suggestions or otherwise get involved in on-going efforts for 
defining standard metrics for BMI systems. Due to space 
limitations, the reader is referred to introductory articles on 
brain-computer interfaces [8], shared control [9], and 
information transfer rate in BCIs for communication [10]. 

II. DEFINITION OF BMI METRICS 

A. Evaluating Patient-Centered Outcomes in BMI Systems 
The ultimate goal for all BMI technology is to improve the 
quality of life and well being of the patient populations who 
use the technology while reducing the cost of healthcare.  
Current clinical outcome measures may not reflect the 
overall benefit that the BMI systems brings to the patient nor 
they accurately capture the functional gains as interpreted by 
the patient in a real-world context. Horwitz and colleagues 
[11] have emphasized that clinical research studies should be 
designed to more closely approximate real-world use of 
therapeutics and biomedical devices. They note that in the 
pursuit of a valid answer, randomized controlled trials "that 
emphasize efficacy under near-ideal conditions have become 
a preferred strategy for both regulators (who need to approve 
medicines and devices for clinical use) and investigators 
(who design trials). When “efficacy trials” dominate, and 
studies that reflect real-world use of the treatment are 
reduced in importance, a surprising collateral effect is that 
the value attributed to the patient’s experience with their 
disease and its treatment is diminished" [11]. 
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At the Clinical BMI workshop, participants agreed that 
different clinical populations such as stroke, ALS, amputees 
or SCI patients might prioritize differently their needs, 
challenges, and have different benefit/risk profiles. For 
example, in terms of accepting a certain degree of 
invasiveness in the BMI system, or a desired operating speed 
of the BMI device.  Moreover, patients may also evaluate 
BMI devices in regard to usability (e.g., maintenance 
requirements of the system, set-up time, cosmesis, etc.), 
functional gains as well as other psychological factors that 
influence patient's acceptance of the technology.  

     Participants at the workshop suggested that existing 
metrics could be adopted by the BMI community, including: 
1) The International Classification of Functioning, Disability 
and Health (ICF), which is a classification of health and 
health-related domains that also includes a list of 
environmental factors to address functioning and disability 
of an individual that occurs in an environmental context 
[12]. The ICF is the international standard to describe and 
measure health and disability. Importantly, metrics have 
both clinical and regulatory relevance and must address: 

a. Determination of the neurological profile of 
individuals who are capable of using a specific 
BMI device (including the prosthetic device). 

b. Determination of the incidence of adverse effects in 
the use of the BMI system. 

c. Determination of the extent of mobility or function 
achieved by the use of the BMI system. 

d. Determination of any measurable health benefits 
with the use of the BMI system. 

e. Determination of improvement of quality of life 
with the use of the BMI system [29]. 

 
In regard to safety, it is important to note that robotic 
exoskeletons and other wearable prosthetics may impose 
unusual joint kinetics and kinematics that could potentially 
injure bone or skin, particularly in SCI or stroke populations 
that characteristically have accelerated osteopenia or 
osteoporosis, unusual spasticity patterns, abnormal 
movement synergy patterns, or contractures [15]. While 
impedance control, motion limited to the physiological range 
of motion and torque cut-offs can greatly mitigate risks and 
increase safety in upper and lower extremity robotics, 
cumulative experience is still very limited for mobility 
devices, warranting caution and careful consideration to 
appropriately apply this exciting new technology. 
  2) The System Usability Scale (SUS, [13]), which 
provides a “quick and dirty”, reliable tool for measuring the 
usability of a wide variety of products and services, 
including hardware, software, mobile devices, websites and 
applications. It consists of a 10-item questionnaire with five 
response options for respondents; from Strongly agree to 
Strongly disagree. The SUS has become an industry 
standard, and it is a very easy scale to administer to 
participants, and it can be used on small sample sizes with 
valid and reliable results [13]. 

3) The Technology Readiness Levels (TRL, [14]), which 
is a type of measurement system used to assess the maturity 
level of a particular technology. Each technology project is 

evaluated against the parameters for each technology level 
and is then assigned a TRL rating based on the projects 
progress. There are nine technology readiness levels. TRL 1 
is the lowest and TRL 9 is the highest [14]. Importantly, the 
technology development process transitions throughout the 
life of the project, and a safety strategy input is required 
early in the project life cycle as part of the technology 
development process.  

B. Metrics for Evaluating Performance in BMI Systems 

Ideally, BMI systems should be reliable, effective (i.e., BMI 
performance should be adequate for the target clinical 
population), robust, allow for multitasking, require minimal 
effort, and release attentional resources to other cognitive-
motor tasks that the patient may want to get involved in, e.g., 
speech, eating, etc.  Accordingly, engineering metrics for 
BMI performance should consider all these aspects: 

B1. Reliability:  The goal is to define metrics that can assess 
how reliably and robustly a closed-loop BMI can operate a 
wearable prosthetic. The reliability should be assessed on the 
complete system (including the patient in the loop), although 
reliability of system components may also be useful for 
modular designs. Unfortunately, with a few exceptions, 
reliability has not been a focus of prior research. Simeral et 
al [16] and Chadwick et al [17] have examined the stability 
and reliability of intra-cortical microelectrode array 
recordings/decodes in a human with tetraplegia 1000 days 
post-implantation using performance measures in a cursor 
control task during 5 consecutive days [16] or the control of 
simulated 2D arm reaching at days 1049, 1057 and 1080 
post-implant [17]. Chao et al. examined the robustness of 
neural representations and signal -to-noise ratios (SNR) of 
ECoG recordings over a period of months using decoding of 
hand position and arm joint angles during reaching in non-
human primates [18]. They found that decoding did not 
degrade significantly over this relatively short time, and 
reported that decoding performance and time between model 
generation and model testing were not negatively correlated. 
These studies however do not elucidate the system's 
reliability and robustness outside the short reporting periods 
nor inform us of any sources of failures encountered 
throughout the current lifetime of the implant. 
  In this regard, physics-of-failure analysis with respect to 
expected life cycle stresses & lifetime, syndromic 
monitoring studies, and the design sensor canaries for self-
diagnostic of signal quality may be required for 
characterizing the reliability and robustness of a BMI 
prosthetic. In addition, methods for real-time anomaly 
detection and error correction, as well as methodologies for 
estimating model uncertainty using model performance data 
are needed. Some metrics that can be deployed are: 
Reliability metric:  The operational system availability of 
the BMI system, addresses the continued dependence of the 
patient on the neural interface for the execution of ADLs.  
Availability metric: It reflects the probability that the system 
will operate satisfactorily at time t when called upon for use.  
It is expressed as the total system up time divided by the 
total operating hours. Of course, high reliability and 
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availability electronics can be achieved on the basis of 
predicting the possible failure site, failure mode, and 
mechanism of bioelectronics systems. The detection of first 
faults during operation for fault resistance and fault 
tolerance with systems that are capable of monitoring and 
transmitting degradation related signals is important to 
determine possible future loss of functionality.  
 
  B2. Performance:  It is generally agreed that the BMI 
literature and methods are difficult to evaluate and compare 
due to differing experimental protocols, evaluation metrics, 
assumptions, source signals, use of shared control, number 
of electrodes or features, feedback modality used, length of 
training, type of decoding (neural classification vs. 
continuous time trajectory decoding, etc.) and even types of 
users tested [19]. Typically, engineering metrics for 
assessing decoding performance in BMI systems have been 
mostly limited to a few: 1) transfer of information by BMI 
systems [19]-[20], 2) accuracy (e.g. Pearson's correlation 
coefficients [21], or the signal to noise ratio (SNR) between 
the measured and the predicted decoder output using cross-
validation techniques [22]), and less often, neural tuning or 
neural adaptation to BMI use [23]. 
 
1) Transfer of information by BMI systems (or information 
transfer rate, ITR).  ITR (bits per sec) is a general evaluation 
metric devised for brain-computer interface systems (BCIs) 
for restoring linguistic communication such as P300 BCI 
spellers (see [19] for a review) or to evaluate performance in 
BMI systems for 2D cursor control [10], [20]. It also allows 
comparison of the performance of BCI systems, which have 
a different number of tasks [6], [7], [21]. Speier et al [19] 
summarize several limitations of the current use of ITR as a 
BMI metric: a) conditional probabilities for selection 
sequences have not been reported, b) information about 
types of errors in BCI for communication are not used to 
improve their selection (errors are either ignored or deleted; 
time outs in 2D BCIs limit quantification of performance), c) 
task constraints or 'shared control' are usually not factored in 
the quantification of BMI performance, and d) it is unclear 
how low the ITR would need to be in order to understand the 
BCI output. In addition, ITR assumes that there is only one 
information channel that can be used to extract information 
from the brain, and it is not clear how ITR could be used to 
quantify performance in a neuroprosthetic limb performing 
continuous decoding for robot control rather than neural 
discrete classification of targets.  

With respect to BMI for cursor control, Tehovnik et al 
reviewed the literature and reported, "Typically, the bit rate 
of the [reviewed] BMI studies fell below 1 bit per second" 
(page 137, [20]). These studies included human and non-
human primate subjects based on single cell, ECoG or EEG 
sources. Moreover, it was reported that the amount of 
information transfer with BMI saturates after about 50 
neurons when using fixed electrode arrays. The limited 
performance however could be addressed by taking into 
account the limitations mentioned above for BCI for 
communication as they also apply to BCIs for cursor control. 
 

2) Accuracy: While both synchronous and self-paced BMI 
systems based on discrete classification of neural signals 
have been evaluated using various metrics (bit rate, 
confusion matrix, sensitivity and specificity, and others; 
please see [21] for a detailed review), model-based 
continuous state decoders inferring continuous time 
kinematics or kinetics normally use a Kalman or Wiener 
filter to translate neural activity into motor commands [22], 
[24]. Performance evaluation is typically done off-line (e.g., 
during calibration or training of the decoder although some 
real-time variants have also been proposed that do not 
differentiate between training and performance) using cross-
validation procedures with Pearson's correlation coefficient 
(r), the coefficient of determination (r2), or the SNR values 
used to assess the quality of the reconstructed kinematics or 
kinetics [22], [24]. One limitation of off-line decoding is the 
observation that a BMI's prediction power does not 
necessarily translate into improved closed-loop BMI 
performance (see [25] for a discussion), and thus metric 
reporting on off-line decoding performance may not be a 
suitable metric for BMI systems. In recent closed-loop BMI-
cursor control systems, accuracy has been evaluated using 
the error rate (ER), which measures the percentage of the 
runs where a target is missed (a target could be missed 
because either a time limit expired or a false target was 
selected, [26]). Existing standards could be incorporated in 
BMI metrics, including ISO 9241, part 9 standard [27] for 
testing pointing device performance and user assessment as 
has been recently reported in a BMI system for point-and-
click cursor control for humans with tetraplegia [26]. 
 
3) Neural tuning or adaptation: It has been noted that use of 
a BMI system may trigger or enhance neuroplasticity as the 
user learns to control the neuroprosthetic system or adapts to 
controlled perturbations within the BMI task environment 
([23], for a review see [25]). As brain adaptation is a 
desirable property of BMI systems for assistive and 
rehabilitative applications, engineering and clinical metrics 
capturing neural tuning or adaptation, and relating those to 
clinically and user meaningful benefits may be useful in 
comparing closed-loop BMI systems.  Metrics that examine 
how each neuronal unit (or electrode, or region of interest) 
modulates its firing rate (or neural activity) with respect to 
discrete and/or continuous states across sessions in BMI 
longitudinal studies are likely to provide the most useful 
information [26], [28]. 

II. CONCLUSIONS 

The goal of a BMI system is to extract the intent or goals 
from the user's neural activity and to provide reliable control 
outputs to external devices leading to quantifiable functional 
gains. Evaluation of diverse BMI systems will require 
careful selection of user, clinical and engineering metrics, 
which could ultimately assist in the BMI development, 
comparison of BMI systems, and prediction of user 
acceptance of a given BMI system. In this short review, 
several metrics have been discussed, however, these metrics 
should be seen as complementary, and proper analysis of the 
closed-loop BMI system performance should consider them 
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as a whole. Moreover, it should be stressed that it is not clear 
how these different metrics should be weighted in order to 
compare different alternative solutions, as this is clearly 
highly dependent on the application. Thus, the evaluation of 
these systems is inherently multidisciplinary and all relevant 
stakeholders, including end-users should be involved in it. 
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