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O
ver the last few decades, 
the advances in disciplines 
such as neuroscience and 
engineering have intro-
duced the brain–computer 

interface (BCI) as a promising tool for 
neurorehabilitation and neurophysiology 
research. BCI research primarily aims at 
development of assistive and rehabilita-
tion strategies for motor-impaired users 
and, hence, sensorimotor-rhythm (SMR)-
based BCIs are widely explored. This type 
of BCI performs detection and interpreta-
tion of the neural activity underlying vari-
ous user intentions, specifically related to 
movement, and translates these brain 
functionalities to the external environ-
ment without relying on normal neuro-
muscular pathways. The interfaced device 
thus achieves motor control directly from 
the neural activity. Motor-control BCIs 
investigate various aspects of human 
motor skills and have successfully identi-
fied neural patterns related to motor exe-
cution, imagination, and intention from 
bilateral limbs. In this article, we provide 
a summary of recent advances in motor 
control BCI, specifically in movement 
kinematics decoding and motor control of 
localized areas of the limb. We further dis-
cuss the research challenges and future 
scope of work in this area of research.
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Background
The primary focus area of BCI research is the neurological 
disorders that affect the motor cortex of the brain, leaving 
the patients with severe motor disabilities and loss of man-
ual dexterity [1]. This has resulted in the development of 
motor-control BCIs that function depending on the SMRs 
of the brain [1]–[3]. Human motor abilities and their under-
lying phenomena are explored using invasive and noninva-
sively recorded brain activity. SMR-based BCIs focus on 
characterizing and differentiating the neural features 
responsible for various motor tasks. The translation of 
neural activity corresponding to bilateral limb movement 
execution or imagination is a widely popular motor BCI 
control output. As indicated in Figure 1, in a BCI system, 
recorded neural data undergo signal processing and 
machine learning algorithms that identify neural features 
that can be translated to commands to control external 
devices. The demand of continuous and control output 
with higher degrees of freedom introduced movement 

kinematics research in BCI, which uses neural activity to 
decode movement parameters such as speed, direction, 
position, and force. Furthermore, just as the neural activa-
tion patterns differ for various motor tasks and limbs, spe-
cific localized areas of the limbs (arm, elbow, shoulder, 
hip, and knee) also generate discriminative activity. Identi-
fying such cortical activations underlying these tasks from 
scalp-recorded brain activity can have a huge impact on 
neuromotor rehabilitation applications.

The objective of these areas of SMR-BCI research is to 
provide high-precision, continuous, and accurate motor 
control to the interfaced device. The existing BCI research 
sets performance goals, including high information transfer 
rate, low decoding error, high classification accuracy, 
robustness, portability, and cost efficiency, while designing 
a system. To attain each of these goals, the major challenge 
is to identify the neural phenomenon underlying finer 
movement tasks, using scalp-recorded brain signals. The 
development of signal processing and machine learning 

algorithms [98], [106], [107] over the 
years has enabled BCI to work toward 
these goals. The various brain data 
acquisition modalities record neuronal 
activations appearing at different corti-
cal levels or on the scalp surface, 
which result in different signal spatial 
resolution. Specifically, for noninvasive 
techniques that record extracellular 
potentials over the scalp, the signal has 
limited spatial resolution and frequen-
cy range, and the technique is highly 
susceptible to environment interfer-
ence and muscular or ocular artifacts. 
As a result, these factors are major 
challenges in noninvasive BCI re -
search. Recent studies have estab-
lished the use of noninvasive signals 
for movement kinematics and finer 
motor control, despite the assumption 
that these parameters are encoded in 
the neuronal firing [4]–[7].  

Related Work

BCI for Communication  
and Control
BCI technology has been introduced 
with the goal of providing augmenta-
tive communication and control for 
those with severe neuromuscular dis-
orders [1], [7], [8]. However, researchers 
have also investigated the non  medical 
applications of BCI [95], thus develop-
ing brain-controlled devices aimed at 
performance en  hancement or enter-
tainment. In this section, an overview 
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of existing BCI that provides motor con-
trol is discussed.

The pioneering researchers in BCI have 
reviewed the state-of-art techniques in this 
area and have reported their findings in [1], 
[7]–[9], and [99]. The neurophysiological 
phenomenon observed is the modulation of 
rhythmic activities (mu, beta, and gamma 
rhythms) recorded over the sensorimotor 
cortex, termed SMR, by human motor 
tasks, such as actual movement, motor 
intention, or motor imagery. In bilateral 
movement tasks, these modulations are 
called event-related (de-) synchroniza-
tion (ERD/ERS) of mu (8–13 Hz) and beta 
(14–26 Hz) rhythms, indicating a decrease 
in band powers recorded from contralater-
al sites and its increase in ipsilateral sites. 
Figure 2 demonstrates these cortical rhyth-
mic modulations associated with bilateral 
hand motor imagery as reported in [99]. In 
addition, the neural phenomena reflected 
in slow cortical potentials (SCP), P300 and 
event-related potentials with their ability to 
generate discrete control commands to an 
interfaced device were reported to have a 
wide range of usability in BCI. Real-time 
motor control was achieved by BCI in 
which users learned to modulate their SMR 
amplitude [10] and ERD/ERS [11] associat-
ed with various limb movement imagina-
tions. The reports in [4], [8], and [12]–[14] 
highlighted the developments in SMR-BCI 
and the shift of its goal from single-trial 
classifications to the design of adaptive, 

Figure 2. the topologies of a mu-band power for right-/left-hand 
motor imagery. (a) the cortex and (b) the scalp. (c) average time-
frequency representation maps using minimum-norm estimates in the 
frequency domain [99].
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asynchronous BCI systems. BCI research on discriminat-
ing limb areas, such as wrist/elbow/shoulder and knee/hip, 
is relevant since stroke-related impairments affecting 
movement coordination can be better studied using this 
approach rather than gross movement activation patterns. 
Various brain studies have reported the cortical reorganiza-
tion following stroke, resulting in overlap of cortical areas 
corresponding to independent joints [15], [16].

Neural Encoding of Movement Kinematics
The investigation of neuronal activation patterns responsi-
ble for hand-movement kinematics have been performed 
using invasive brain recording of primates as well as 
humans. The goal of these works have been to shed light 
on the neural encoding and connectivity that enables one 
to perform coordinated and defined motor tasks. In [6], the 
authors reviewed the directional tuning of neural signals 
and the literature on decoding movement direction and 
trajectory using multiple BCI modalities. Furthermore, the 
review reported in [5] provided a comprehensive overview 
of invasive and noninvasive studies in movement kinemat-
ics decoding in humans and in primates.

Various studies have demonstrated directional tuning of 
neuronal parameters, i.e., its variation with the direction of 
movement. Center-out hand-movement experiments were 
used in these studies. Single-unit activity and multiunit 
activity studies in primates showed that the movement 
direction was found to depend on the neuronal firing rate 
[17]. More recent studies reported the ability of an ensemble 
of neuronal activity to control a robotic arm to perform 
reach/grasp movement [18] and that of localized field poten-
tials to decode movement trajectories and velocity [19]. Fur-
ther neural data recorded from cortical surface using 
electrocorticography also provided local motor potential 
features that demonstrated direction tuning and two-
dimensional (2-D) four-target movement decoding [19], [20]. 
The next sections discuss the state-of-the-art techniques in 
finer motor control using noninvasive BCIs.

Discrete Classification  
of Movement Parameters
In implementing a BCI with higher degrees of freedom, the 
identification of the neural correlates of motor kinematics 
is of prime importance. The noninvasive research in this 
area aimed to identify and extract the neural features that 
are responsible for precise motor control. In this section, 
we list the recent findings in BCI research that used nonin-
vasive brain data acquisition modalities to discretely clas-
sify hand-movement parameters such as direction, arm 
force, and speed. Some special cases are also mentioned 
that investigated speed/force imagery, rhythmic imagined 
movement, and expressive movements.

The tasks adopted by the researchers include center-
out and center-in movements that are either visually guid-
ed or self-paced. Various studies have even attempted 
natural movements such as drawing, clenching, and 

reaching. All this research points toward specific spectral 
and spatial distribution of neural activity associated with 
finer movement. The involvement of the motor and parietal 
cortex has been repeatedly proven in all the studies as 
well as the neural features from low-frequency (<8 Hz) 
bands. A wide range of algorithms were reported that use 
time–frequency (TF)-space localized features to classify 
the movement parameters. According to the results report-
ed in the literature, spectrally localized neural data and opti-
mized algorithms based on a common spatial pattern 
(CSP) provide better classification performance and 
hence are widely explored. The results obtained from 
these studies are summarized in Table 1, and we will dis-
cuss the details.

The foremost study on identifying hand-movement 
parameter direction using a noninvasive brain signal was 
reported in [21]. The movement direction was classified 
on a single-trial basis using magnetoencephalography 
(MEG) signal power in low-frequency bands. The study 
simultaneously recorded electroencephalography (EEG) 
and 3-Hz low-pass-filtered EEG and MEG features were 
analyzed. Reported in [22] and [23] was that the cortical 
sources of movement direction were using source-local-
ization methods. Functional near infrared spectroscopy 
(fNIRS) has been used by various researchers to investi-
gate arm movement force. The hemoglobin concentration 
changes as the subject performed isometric arm move-
ment were used to discriminate the force direction, and 
results of classification were reported in [24] and [25]. The 
direction tuning of fNIRS-based hemodynamic signals 
recorded over contralateral sensorimotor areas were 
demonstrated in [26].

The role of posterior parietal cortex in encoding hand-
movement direction and intended movement direction 
was studied in [27] and [28]. The studies [29]–[31] investi-
gated the TF regions that contain optimal movement 
directional information that can enhance the decoding 
and classification performance of EEG-BCI systems. The 
TF bins that provide higher direction-dependent informa-
tion from specific electrodes were detailed in [29]–[31]. 
Reported in [31] was a significant (p < 0.005) movement 
direction dependent modulation toward the end of move-
ment at low frequencies (≤6 Hz) from the midline parietal 
and contralateral motor areas, as shown in Figure 3. In 
[87], neural activity related to bidirectional hand move-
ment (imagined and executed) was recorded using a low-
cost commercial EEG amplifier and decoded. Single-trial 
classifications of center-out and center-in movements 
were reported in [32] using CSP-based EEG features (eight 
classes), [33] with dyadic filter bank CSP-based EEG 
(<8 Hz) feature (four classes), and in [34] with canonical 
variance analysis (four classes). In [35], SCP derived from 
0.1–1-Hz EEG data was used to predict movement direc-
tion on healthy as well as stroke patients (using paretic 
arm). In [36], movement direction was studied by record-
ing data as the subject traced an infinity shape using his 
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right arm in the vertical plane. Various other tasks studied 
using EEG include hand-movement speed [37], the param-
eters of motor imagery, such as speed and force specific 
to clenching [38], and bilateral imagined grip force [39].

Movement Kinematics Decoding
The BCI research findings that specifically focus on 
the reconstruction of hand-movement speed/velocity 
and trajectory are reviewed in this section. The move-
ment trajectory/coordinates as a hand/finger/elbow 
performs a task are studied using various experiment  
paradigms. The research has reported significant con-
tribution to linear decoding by low-frequency EEG  
(<3 Hz) from motor, premotor, and parietal areas. Various  
nonlinear decoders were also proposed with the goal  
of including more signal spectrum. The research in 
this area using EEG is summarized in Table 2. The 

performance metric, indicated in the results, is the cor-
relation coefficient between recorded and reconstruct-
ed movement parameters.

The ability of an MEG signal to decode hand-movement 
kinematics was explored in [40]–[44]. In [40] and [41], 15-Hz 
low-pass-filtered MEG was used for decoding, and it was 
reported that the sensor networks over central and parietal 
scalp areas contributed more toward this decoding. Further 
studies have used MEG to reconstruct 2-D fingertip move-
ment trajectory [42] to decode movement velocity [43], 
[44]. The 2-D or three-dimensional (3-D) center-out move-
ment/reaching tasks were used to reconstruct kinematics 
using low-frequency MEG. In [45], an fNIRS signal was 
used to estimate finger pinch forces using a sparse linear 
regression method. The applicability of EEG in decoding 
hand-movement kinematics was explored in [46] and [47] 
using a center-out 3-D hand-movement experiment 

Table 1. Classification of hand-movement parameters.

Modality Study Movement Parameter/Task Feature/Technique
Result (Classification  
Accuracy, Remarks)

MEG
EEG

[24] 2-D center-out self-chosen target 
hand movement

Regularized linear discriminant 
analysis (LDA)

MEG: 67%; EEG: 55% 
MEG+EEG: 60.2%

MEG [25], [26] 2-D center-out visually guided four-
target wrist movement

LDA and Bayesian classifier,  
discriminant pattern source  

localization

67% (overt) and 62.5%  
(imagined), localized activations 

for the spectral band of 0–7 Hz

fNIRS [27] Isometric arm movement force  
to four targets

Self-organizing maps 87.5% (binary class)

[29] Sparse logistic regression >95% (binary class)

EEG [30] Visually guided four-target wrist 
movement

Regularized LDA, nonlinear support 
vector machine (SVM) 

65% (left versus down movement) 

[31] Delayed saccade/reach Independent component analysis 80.25% (right versus left direction)

[32] Visually guided three-target  
reaching task

Fisher linear discriminant (FLD) 93.91% (right versus left direction)

[35] 2-D center-out visually guided  
four-target reaching

Regularized wavelet CSP 80.24% (four-class)

[36] Eight-target center-out and  
center-in movement

CSP 71% (binary)

[37] 2-D center-out visually guided  
four-target reaching

Dyadic filter bank CSP 66.08% (four-class)

[38] Four-target self-paced center-out 
movement

Canonical variance analysis 85%

[39] Four-target center-out movement SCP 76% (healthy) and 47% (stroke)

[40] Tracing infinity shape CSP for six-class data 74% (binary)

[43] Movement speed Wavelet CSP 83.71% (binary)

[44] Speed and force of clench motor 
imagery

Alpha band power 67.65% (trained subjects) and 
59.68% (nontrained subjects)

[46] Imagined grip force Movement-related cortical  
potential

24% (SVM) and 27% (k-FLD)  

[97] Bidirectional center-out visually 
guided movement

Filter bank CSP 81.3% (movement execution) and 
82.4% (movement imagination)
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paradigm. The low-pass-filtered EEG (<1 Hz) was used to 
reconstruct hand-movement velocity using a linear decod-
ing model, and further source localization analyses indicat-
ed the highest contributions to decoding from contralateral 
precentral gyrus, postcentral gyrus, and inferior parietal 
lobule, recorded 60 ms premovement, as indicated in Fig-
ure 4. In [48], researchers applied a continuous 2-D drawing 
task experiment to investigate the corresponding EEG acti-
vations and reported significant contributions from 0.1– 
4-Hz, and 24–28-Hz bands in premotor, posterior parietal, 
and occipital areas was reported.

The kinematics of movement intention using a target-
reaching task in virtual 3-D space [49], natural grasping 
movement [50], center-out hand movements [51], and self-
paced and self-initiated reaching movement [52] was 
studied using EEG. Various modes of EEG signal analy-
sis, such as linear decoding models using low-pass-fil-
tered EEG, phase-locking of low-frequency EEG, and TF 
information of EEG were explored. The movement 
kinematics during natural task, such as filling a glass 
of water, was studied in [53] using filtered EEG  
(<1 Hz) and (0.5–2 Hz). The 2-D hand-movement speed 
coordinates and trajectory were decoded using wavelet-
CSP-based predictors, and the results were reported in 
[37] and [55]. An adaptive estimation of the same parame-
ters was reported in [88] using Kalman filters, and the 
results obtained are indicated in Figure 5. In [55] and [56], 

the involvement of low-frequency EEG from motor, pre-
motor, and parietal areas pre- and postmovement was 
indicated. Reported in [57] and [58] was the use of a lin-
ear decoder model on low-pass-filtered EEG (<1 Hz) to 
decode the velocity of the hand and elbow, among others.

The applicability of linear decoding models in stroke 
patients to reconstruct one-dimensional hand-movement 
velocity was demonstrated in [59]. The parameters of an 
imagined rhythmic movement were studied in [60] using 
the filtered EEG (0.4–0.6 Hz). Nonlinear regression mod-
els were also reported in decoding movement kinematics 
to enable processing of high-frequency EEG and to 
improve regression performance [61]. In [61], a particle 
filter model to decode 2-D and 3-D hand-movement posi-
tion, and in [62] a kernel ridge regression to decode 3-D 
hand-movement velocities were reported. In [63], the 
hand joint angular velocities as well as synergistic tra-
jectory during a 3-D reach-to-grasp task were decoded 
using EEG. The applicability of EEG alpha and beta band 
powers, from planning, execution, and combined time 
segments, to predict peak hand-movement speed and 
acceleration was  studied in [64].

Movement of Localized Limb Areas
The noninvasive BCI research on localized areas of 
upper limbs, such as, elbow, wrist, finger, and shoulder, 
and lower limbs, such as, hip, knee, and foot, mainly 

Figure 3. the movement-direction-dependent, normalized Snr. (b) the Snr and (c) the trial-averaged temporal 
activity for electrode Pz low-pass-filtered at 1 Hz [35].
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Figure 4. (a) the scalp maps indicating a contribution toward decoding hand-movement velocity. (b) the 
localized EEg sources from −60 ms overlaid onto magnetic resonance imaging structural images [55].
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Table 2. Hand movement kinematics decoding.

Modality Study Movement Parameter/Task Feature/Technique
Result (Correlation  

Coefficient, Remarks)

EEG [54], [55] 3-D center-out hand movement Linear decoding model (0.19, 0.38, 0.32) (x, y, z) axes  
of speed

[56] 2-D drawing task Kalman smoother decoder 0.35–0.83 (horizontal) and 
0.11–0.45 (vertical)

[58] 3-D virtual space target-reaching 
intention

Stepwise regression (0.2–0.39, 0.09–0.5, 0.09–0.57) for 
vertical, horizontal, depth

[59] Natural grasping: finger  
trajectories

Linear decoding model 0.76

[60] Eight-target center-out hand 
movement

Linear multiple regression model 0.76

[61] Self-paced and self-initiated 
movement

Partial least squares and support 
vector regression

0.2-0.4 

[62] 3-D center-out movement to  
self-chosen targets

Linear decoding model 0.7, 0.77, 0.62) and (0.7, 0.78, 
0.62) for x, y, and z coordinates  

of velocity and position

[63] Movement kinematics: filling a 
glass of water

Filter bank CSP and regression 
models

(0.41, 0.36, 0.48, 0.17) for x, y, z 
and absolute values of speed

[43], [64], [65] 2-D center-out four-target  
reaching task at two different 

speeds

Wavelet CSP, Kalman filters 0.57 (average over six  
parameters), 76% reduction  

in number of predictors.

[66] 2-D target selection task Linear decoding models (0.39, 0.47) for (x, y) axes of 
velocity

[67] Velocity of hand/elbow during  
a center-out movement task

Linear decoding models (0.31, 0.27, 0.15) and (0.31, 0.3, 
0.16) for (x, y, z) axes of hand 

and elbow velocity

[70] 2-D and 3-D hand movement 
position

Particle filter model Higher decoding accuracy  
compared to linear decoders

[71] 3-D movement velocities Kernel ridge regression Significant reduction in  
decoding error

[72] 3-D reach to grasp task Independent component 
 analysis, Wiener filter, multiple  

kernel learning 

(0.59, 0.47, 0.32) for first three 
kinematic synergies

[73] 2-D finger movement Alpha and beta band powers Coefficient of determination: 
0.21–0.31
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addresses the challenges of overlapping cortical sources. 
The investigations in this area focus on movement types 
executed by different areas of the same limb. Studies have 
investigated upper limb movement (hand grasping, pinch-
ing, and elbow flexion) using MEG [65], finger movement 
tasks using functional magnetic resonance imaging 
(fMRI) [66], and combined MEG-EEG [67]. Figure 6 shows 
the relatively similar activation patterns in terms of aver-
age evoked magnetic field recorded by MEG for different 
finger movements.

A summary of various EEG studies mentioned in this 
section is given in Table 3: 

 ◆ classification of imagined fast and slow wrist exten-
sion and rotation, elbow versus shoulder torque 
intention [68]

 ◆ imagined movement involving three limbs (left and 
right index finger and right toe) [69]

 ◆ imagined movement of finger and wrist [70]
 ◆ imagined wrist flexion and extension of right and left 

wrists [71]
 ◆ self-initiated movement tasks (shoul-

der abduction, extension and rotation, 
elbow extension, forearm pronation, 
wrist extension, and rotation) [72]

 ◆ imaginary grasp movements and imag-
inary elbow movements [73]

 ◆ five finger movements of the same 
hand [74], [75]

 ◆ nine index finger position during a 
key-pressing task [76]

 ◆ real and imagined movements using 
index and thumb fingers [77].

The neural features, such as mu/beta 
band powers, movement-related cortical 
potential (MRCP), event-related potentials, 
and ERD/ERS patterns, are of interest in 
these BCIs. A wide range of algorithms 
were employed in these studies, as shown 

in Table 3, to improve the classification performance of 
these multiclass BCI systems. Also, studies such as [69] and 
[75] have reported  single-trial classifications of elbow/shoul-
der/finger movements in disabled subjects as well. The BCI 
research on lower limb movements was reported in [92], 
using fMRI to identify cortical source of bilateral foot move-
ment imagery and in [93] and [94] using EEG to perform sin-
gle-trial classifications of foot movement. The research 
indicates the feasibility of EEG signals to decode localized 
limb movements. A less-explored topic in this BCI research 
seems to be investigation of spatially localized regions 
responsible for distinct limb areas using EEG. Although the 
spatial resolution of EEG makes this a challenging task, the 
significant findings in the literature makes this a promising 
area for future research.

SMR-BCI Applications
The ultimate objective of all the studies mentioned in 
the previous sections is to impart higher-dimensional 

Thumb

–6 0 6

Index Middle Little

10–14
–6 –5 0 50 6

10–14
–6 0 6

10–1410–14

Averaged Evoked Fields in T

Figure 5. the evoked magnetic fields are shown for movements of the thumb, index, middle, and little finger of 
the right hand [76].

50
100

150
–0.2

–0.2
–0.1

0.1
0

–0.4

0
0.2

0.4

–0.2

0

0.2

0.4

Samples

Speed

x-
C

oo
rd

in
at

e

60 80 100120
140

–0.1

0

0.1

0.2

Position

x-
C

oo
rd

in
at

e

y-Coordinate y-Coordinate
Samples

Recorded Parameter Estimated Parameter

Figure 6. the 2-D hand-movement trajectory parameters reconstructed 
using Kalman-filter-based adaptive estimator with selected predictors [98].



12 IEEE SyStEmS, man, & CybErnEtICS magazInE   October 2016  

and continuous motor control to an interfaced device 
directly from brain signals. In this section, a few studies 
that demonstrate noninvasive BCI systems used to con-
trol movement of an interfaced device are listed. It is 
interesting to note that, in all these studies,  continuous 
control is achieved using discrete motor tasks or combi-
nations of motor tasks, using specific control strategies. 
The applicability of movement kinematics decoding to 
achieve higher-dimensional motor control, as an alter-
native for this strategy, can thus be investigated.

In [78], robotic arm control to execute a multistep 
grasping task was achieved using EEG and was demon-
strated both in healthy and poststroke subjects. Discrete 
motor tasks (imagine left/right hand open-close, imagine 
open-close of both hands, imagine tap foot) were per-
formed, and control commands (move right-left, vertical, 
open/close robot hand) were provided for the robot. In [79], 
a virtual helicopter control was achieved using EEG. The 
(left, right, up, down) controls were provided by imagining 
movement of left hand, right hand, both hands up, and rest, 
respectively. In [80], an EEG-based asynchronous BCI sys-
tem was developed that allowed driving a car in a 3-D vir-
tual reality environment. The imagined hand and feet 
movements were used to determine the direction of the 
steering wheel and car speed. Similarly, in [81] and [82], 
continuous 3-D control was achieved using EEG in a virtu-
al helicopter and quadcopter. The SMR-based features 
were used in [81] to achieve helicopter control and features 
from selected electrodes and frequency bins were used in 
[82] to achieve quad copter control.

Limitations and Future Scope
The noninvasive BCI research discussed in this review 
demonstrated the potentials of scalp-recorded signals to 
provide higher-dimensional motor control. In this regard, 
we have provided a comprehensive review of recent stud-
ies using noninvasive BCI for classification and decoding 
of hand-movement parameters and classification of move-
ment types performed by localized areas of a single limb. 
SMR-BCI that aims to obtain precise motor control using 
relevant features from spectral, temporal, and spatially 
localized neural signals recorded by EEG, fNIRS, and 
MEG were reported in these studies. Most studies report 
the increase in BCI performance to decode (classify or 
reconstruct) movement kinematics when low-frequency 
features (<6–7 Hz) are considered [21]–[23], [29], [31], [33], 
[35], [37], [44], [48], [50]–[60], [88]. Further, the contribution 
of parietal and supplementary motor areas along with pri-
mary motor cortex is also reported [23], [27]–[31], [46]–
[48], [56]. These results introduce novel research areas for 
BCI research that will look into low-frequency signals and 
the regions outside motor area and how these correlate 
with the human motor activity. 

It will be interesting to look into the temporal varia-
tions in connectivity between regions of the brain for dif-
ferent spectral regions and how it correlates to movement 
intention, planning, and execution. Research in these 
directions can help to better understand the neurophysiol-
ogy of human locomotion and thus contribute to SMR-BCI 
systems. The results indicate the feasibility of such BCI 
systems to impart higher degrees of freedom of movement 

Table 3. Classification of movement types of the same limb. 

Study Movement Task Feature/Technique Result (Classification Accuracy)

EE
G

[77] Imagined fast and slow wrist 
extension and rotation

Rebound rate of MRCP and the mu 
and beta band powers

Average misclassification rate of  
21% (binary)

[78] Elbow versus shoulder 
torque intention

Classifier-enhanced TF synthesized 
spatial pattern

(92%, 75%) and (100%, >80%) accuracy 
for (healthy, stroke) subjects 

[80] Motor imagery patterns for 
finger and wrist

Mahalanobis distance clustering 
and artificial neural networks

65% and 71%

[81] Imagined wrist flexion and 
extension of wrists

Elman’s neural networks 63%

[82] Self-initiated seven  
movement tasks 

Bayesian classifier 62.9% (30.2% baseline)

[83] Rest, imaginary grasp, and 
elbow movements

CSP, filter bank CSP, etc. 66.9% (grasp versus elbow)  
and 60.7% (three-class)

[84], [85] Finger movement Spectral principal component 
analysis, band powers, and direct 

temporal data 

77.11% over each finger pairs
91.28% (epileptic patients)

[86] Nine index finger position 
during key-pressing

Random forest classifier 12.29% (11.1% chance level)

[87] Real and imagined move-
ments using fingers

Symbolic regression-based features 45% (SVM) and 38% (artificial neural 
networks)
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to an interfaced device or allow the user to learn and 
enhance finer control and coordination of one’s limb 
movement. These can have a significant impact on  
clinical applications, (neurorehabilitation and neuropros-
theses) as well as navigation applications (robot,  
virtual reality, and games).

Notwithstanding the aforementioned highlights of this 
area of research, it is worth mentioning its challenges and 
limitations as well. SMR-BCI investigates different aspects 
of voluntary movement, namely, preparation, intention, 
execution, and imagination. The research on finer parame-
ters of movement widely uses movement execution experi-
ments. Even though studies on kinematics of movement 
intention/imagination can have a significant role in rehabil-
itation applications, this area is yet to be explored. The 
major challenges in this area include 
1) BCI performance of imagined tasks; the SMR-BCI 

research reports reduction in decoding accuracy for 
imagined movement compared to executed movement, 
owing to globalized activity 

2) experiment paradigms that can elicit imagination of 
finer movements; cues and feedback to ensure that sub-
ject performs kinesthetic imagination of such movement 
will be challenging. 
Some studies cited in this review [38], [39], [49], [87], 

[100] report promising results in decoding imagined move-
ment kinematics, and future research can look into this 
aspect of SMR-BCI.

The performance of SMR-BCI is often reported in 
terms of average classification accuracy or a correlation 
coefficient over a limited number of subjects. However, to 
ensure generalization of the results, analysis of statistical 
significance maybe incorporated. Future research may 
look into acquiring a larger dataset on standardized 
experiment paradigms to study movement kinematics. 
The report in [84] raised various concerns regarding the 
use of linear regressors and a correlation coefficient as 
the evaluation metric in movement kinematics recon-
struction studies. The statistical analyses that can be 
performed to avoid certain misinterpretations of the 
results were further suggested. The study pointed out 
how the usage of a linear regressor can limit the spectral 
region of the brain signal under investigation and how the 
correlation metric provided overly optimistic results in 
lower spectral regions.

The studies in [85] and [86] investigated how the arti-
facts affect movement parameter decoding in EEG-BCI 
systems. The effect of a slow trend on EEG signal and 
proposed adaptive filtering methods to extract the same 
was examined in [85]. In [86], the effect of eye movement 
artifacts in the performance of linear decoding models 
was demonstrated. The article reported significant fall 
in performance of linear decoders as compared to non-
linear decoders once the electrooculography-related 
activity was removed. The previously mentioned studies 
point out the major design considerations in decoding 

and signal enhancement algorithms and the need to 
develop efficient alternatives.

Interesting research in this area is the study in [83] 
that investigated the impact of decoding error in device 
control using simulations and suggested how remapping 
decoded parameters to control some other aspects of 
device movement is a viable option. The study specifical-
ly reported that, for the same amount of error for posi-
tion, velocity, and goal decoding, only the latter two 
could produce accurate control output. It reported the 
option of remapping the decoded velocity/goal to control 
position of the output device or vice versa. As pointed 
out by the authors, these interesting transformations 
exist in our everyday skills, e.g., the car velocity being 
controlled by foot position in the pedal.

Researchers still need to look into the possibility of 
developing closed loop BCIs, which can provide real-time 
high-dimensional motor control. Also, decoding of imag-
ined or intended movement trajectory can also be explored 
through design of proper experiment paradigms and neural 
feature identification. It will also be interesting to see how 
the various areas of a single limb contribute to gross move-
ment and its parameters, which essentially combines the 
goals of the various topics discussed in this review. Also, 
incorporating a multimodal brain data acquisition system 
(EEG-fNIRS, EEG-MEG) can enhance the signal resolution 
and hence provide thorough insights into neurophysiologi-
cal phenomena involved in these movement tasks.

Present-day BCI is capable of interpreting the elec-
trophysiological or hemodynamic activity of the brain, 
thereby establishing it as a possible augmentative commu-
nication and control technology for disabled people [1]–[4]. 
However, the major challenges in this research still include 
unreliability of the BCI performance due to low signal res-
olution and nonstationary neural activity. The research 
reviewed in this article suggest that translation of motor 
intentions into precise control commands is possible with 
the help of efficient BCI algorithms. Further studies [80], 
[90] suggest the use of low-cost and user-convenient 
commercial EEG amplifiers in SMR-BCI. These results 
encourage research to develop real-life, practical, and 
user-friendly BCI technology. 

We would like to point out that even though the 
research reported in this article promises feasibility of a 
higher-dimensional motor control system, applying SMR-
BCI as a rehabilitation technology for users who are 
locked in may encounter several difficulties. The adapta-
tion of BCI systems to account for neural features affect-
ed by neuromuscular impairments will be challenging. 
The review in [91] reports EEG-BCI research in stroke 
rehabilitation using imagined and executed motor tasks. 
BCI-based rehabilitation for finer motor control can also 
have significant impact in motor recovery of the user 
and, hence, extensive research is required for the same. 
In conclusion, the SMR-BCI research indicated that finer 
and precise motor control to an interfaced device could 
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be achieved using noninvasively recorded brain signals. 
By addressing the various challenges in this area, practi-
cal and real-world applications of BCI can be implement-
ed. Further progress in this area of BCI research can 
thus lead to innovations in BCI technology.
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